HONORS MATH 3-4

The classes represent the higher dimensional counterparts of the Freshman classes Honors Math 1-2. However, there is a substantial jump in complexity since there are many surprising phenomena that occur in higher dimensions that are not possible in the one-dimensional case. This subject requires more sophisticated methods and new ideas. In particular, it requires a substantial and nontrivial input from linear algebra. That is why this class is taken in parallel with the Honors Algebra 1-2 classes.

Below is a more detailed list of topics covered in these classes.

Part 3. Honors Math 3

1. Euclidean geometry and topology

1.1. Basic affine geometry.
 - Lines, line segments and convex subsets in \mathbb{R}^n.
 - Affine and linear subspaces of \mathbb{R}^n.
 - Linear operators and matrices.

1.2. Introduction to the topology of Euclidean spaces.
 - The Euclidean inner product and norm. Orthogonality.
 - Open sets, closed sets and convergence of sequences.
 - Completeness of \mathbb{R}^n.
 - Path connected subsets of \mathbb{R}^n.
 - Compact subsets of \mathbb{R}^n: Heine-Borel and Bolzano Weierstrass theorems.
 - Continuous maps. Fundamental examples and properties.

2. Differential calculus

2.1. The Frechet derivative.
 - The Frechet differential of a map at a point.
 - Partial derivatives and the Jacobian matrix.
 - Chain rule and applications. Polar, cylindrical and spherical coordinates.
 - Higher order partial derivatives.
 - Div, grad, curl and the Laplacian.

2.2. Applications.
 - Taylor approximations of degree at most 2. The Hessian.
 - Minima and maxima of functions of several variables.
 - The implicit function theorem.
 - Submanifolds of \mathbb{R}^n. Tangent vectors and tangent spaces.
 - Lagrange multipliers.

Part 4. Honors Math 4

1. Integrals of functions of several variables

1.1. Multidimensional Riemann integral.
 - Darboux sums and Riemann integrability.
Fundamental properties and examples.
Jordan measure.
Fubini theorem.
Change in variables formula. Higher dimensional spherical coordinates.
Applications.

1.2. **Improper integrals.**
- Definition and convergence criteria
- Classical improper integrals: Gamma and Beta functions, Gaussian integrals.

2. **Integrals over curves and surfaces**

2.1. **Integral over curves.**
- Arc length and the integral of a function over a curve.
- Differential forms of degree 1 and their integrals over oriented curves.
- Conservative vector fields and their potentials.

2.2. **Integral over surfaces in** \mathbb{R}^3.
- Compact surfaces (with boundary).
- The area element and the integral of a function over a surface. Area of a surface.
- The flux of a vector field through an oriented surface.
- The flux as the integral of a 2-form
- Divergence, Green and Stokes' formulas. Div, grad, curl revisited.
- Formal calculus with differential forms in \mathbb{R}^3. Stokes' formula revisited.