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Abstract

Given a compact group M, we de®ne the notion of multiresolution of L2�M� with

respect to an in®nite sequence of subgroups G0 � G1 � G2 � � � � such that G � [1k�0Gk is

a dense subgroup of M. We give characterizations of various axioms of multiresolution,

demonstrate the existence and give the construction of a wavelet basis for L2�M�. We

also construct stationary multiresolution and wavelets from cyclic vectors. An example

of multiresolution on a non-abelian compact group is given for the in®nite dihedral

group, or isomorphically the real orthogonal group in dimension two. Ó 1999
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0. Introduction

The idea of multiresolution analysis introduced by Mallat [4] has proved to
be a fundamental tool in the construction of wavelet, and has been extended in
many directions. In [2], Koh et al. examined the multiresolution of L2��0; 2p��,
the space of square integrable 2p-periodic functions, and proved some very
simple yet elegant results. We recall the basic de®nition below.

For k � 0; 1; 2; . . . ; de®ne the operator Tk : L2��0; 2p�� ! L2��0; 2p�� by
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�Tkf ��x� � f x
�
ÿ 2p

2k

�
; f 2 L2��0; 2p��; x 2 �0; 2p�:

A sequence of subspaces fVk : k 2 Z�g of L2��0; 2p�� is called a multiresolution
(MR) of L2��0; 2p�� if the following conditions hold:

MR1: dim Vk � 2k and there exists /k 2 Vk such that the set fT l
k /k : l � 0;

1; . . . ; 2k ÿ 1g is a basis of Vk for each k,
MR2: Vk � Vk�1; 8k � 0; 1; 2; . . . ;
MR3: [1k�0Vk � L2��0; 2p��.

Note that the set fT l
k : l � 0; 1; . . . ; 2k ÿ 1g forms a group of unitary oper-

ators of L2��0; 2p��, and is isomorphic to Z2k , the cyclic group of order 2k, or
isomorphically the group of 2kth roots of unity.

This paper is an attempt to extend the notion of multiresolution and to
study their basic properties in a di�erent direction, and is based on the ob-
servation that results in [2] are essentially group theoretical in nature, and can
be better understood in the context of compact groups. To this end, we shall
need to employ Peter±Weyl theory of representations of compact groups and
operator Fourier transforms in the place of traditional Fourier series analysis.

1. Multiresolution of L2�M� with respect to a MR-group sequence

Throughout this paper, let M be a compact group. We normalize the Haar
measure on M so that the total volume of M is 1. Denote L2�M� the space of L2

functions of M with respect to the Haar measure.

De®nition 1.1 (MR-group sequence). A sequence of ®nite subgroups of M ;
fGkg1k�0 is called an MR-group sequence of M if the following conditions are
satis®ed:

(1) Gk � Gk�1; 8k � 0; 1; . . . ;
(2) G � [1k�0Gk is a dense subgroup of M.

Examples. (a) Let T be the one dimensional torus:

T � ft 2 C� : jtj � 1g;
and Gk � ft 2 C�jt2k � 1g � fei2pl=2k jl � 0; 1; . . . ; 2k ÿ 1g. Then fGkg1k�0 is an
MR-group of sequence of T. More generally let Uk � ft 2 C�jtk � 1g. Then
fUmkg1k�0 is an MR-group sequence of T if and only if mkjmk�1; 8k;
and mk !1 as k !1.

(b) Fix any compact abelian group A and an MR-group sequence fGkg1k�0

of A. Given an action of a ®nite group B on A, namely a homomorphism
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b! r�b� of B into the group of automorphisms of A, de®ne the semi-direct
product of A and B with respect to the action r as follows:

A or B � f�a; b� j a 2 A; b 2 Bg

with the group law

�a1; b1� � �a2; b2� � �a1r�b1��a2�; b1b2�:

Suppose the action r preserves each Gk, then we may form the subgroups
Gk or B. Clearly fGk or Bg1k�0 is an MR-group sequence of A or B.

Let L : M ! U�L2�M�� be the left regular representation of M in L2�M�:
�L�g�f ��x� � f �gÿ1x�; f 2 L2�M�; g; x 2 M ;

where U�L2�M�� denotes the group of unitary operators on L2�M�.

De®nition 1.2 (Multiresolution of L2�M� with respect to fGkg1k�0). Let fGkg1k�0

be an MR-group sequence of M. Let Vk; k � 0; 1; . . . ; be a sequence of ®nite
dimensional subspaces of L2�M�. Then fVkg1k�0 is called a multiresolution of
L2�M� with respect to fGkg1k�0 if the following conditions hold:

MR1: dim Vk � jGkj and there exists /k 2 Vk such that the set fL�Gk�/kg is a
basis of Vk for each k,

MR2: Vk � Vk�1; 8k � 0; 1; . . . ;
MR3: [1k�0Vk � L2�M�.

1.1. Characterization of MR1

Let H be a ®nite subgroup of M and / be a representation of H in a Hilbert
space H. Let u1; . . . ; um 2H and S � f/�H�uig16 i6m. Consider the H-in-
variant space V � span S.

Denote L the left regular representation of H.

Proposition 1.1.1. The followings are equivalent:
(i) S is linearly independent.
(ii) /jV � L� � � � � L|�������{z�������}

m

, the direct sum of m copies of the representation L.

Proof. Suppose S is linearly independent. Let C�H � be the group algebra of H,
where H acts by left translation. Recall that for a ®nite H, this is another re-
alization of the left regular representation of H. De®ne a map

T : C�H � � � � � � C�H �|���������������{z���������������}
m

! V
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as follows: T ��h1; . . . ; hm�� � /�h1�u1 � � � � � /�hm�um for h1; . . . ; hm 2 H , and
extend T multi-linearly. T is clearly surjective and H-intertwining. T is easily
seen to be injective since S is linearly independent. Thus

/jV � C�H � � � � � � C�H �|���������������{z���������������}
m

� L� � � � � L|�������{z�������}
m

:

Note that dim V 6mjH j. However (ii) implies dim V � mjH j so S must be
linearly independent. �

We now consider the following more general setting, but with the number of
vectors m � 1:

Let K be a compact group and / be a unitary representation of K in a
Hilbert space H with the inner product h; i. Let u be a non-zero vector in H.
Consider the K-invariant closed subspace V � spanf/�K�ug:

Question. When is /jV � Left regular representation of K ?

The next proposition is quite standard. We give a proof for the sake of
completeness.

Proposition 1.1.2. Define the map T : V ! L2�K� by T �v��k� � hv;/�k�ui;
k 2 K. Then

(i) T is a K-equivariant imbedding.
(ii) T �V � � spanfL�K�fug, where fu � T �u� 2 L2�K� is given by fu�k� �
hu;/�k�ui; k 2 K.

(iii) /jV is contained in the left regular representation of K.

Proof. One can easily check T is a K-map. To see T is injective, let T �v� � 0 for
some v 2 V . Then hv;/�k�ui � 0 for all k in K. Thus v 2 V ?, the orthogonal
complement of V in H. Since v 2 V ; v must be zero.

Since V is the closed span of /�k�u, where k 2 K, and since T is a K-equi-
variant imbedding, we see T �V � must be the closed span of L�K�T �u�. We thus
have (ii).

(iii) follows directly from (i). �

De®nition 1.1.3 (Cyclic vectors of L2�K�). Let f 2 L2�K�. We say f is a cyclic
vector of L2�K� if spanfL�K�f g � L2�K�.

From Proposition 1.1.2, we see that /jV � Left regular representation of K,
if and only if fu is a cyclic vector of L2�K�, where fu�k� � hu;/�k�ui; k 2 K.

For f 2 L1�K�. De®ne the operator Cf in End�L2�K��, the algebra of linear
operators of L2�K�, by

18 A. Lim, C.-B. Zhu / Linear Algebra and its Applications 293 (1999) 15±38



Cf �
Z

K
f �k�L�k� dk;

where dk is the normalized Haar measure on K. Evidently Cf is the operator of
left convolution by f on L2�K�. Namely Cf �h��x� � �f � h��x� �R

K f �y�h�yÿ1x� dy � RK f �xyÿ1�h�y� dy, where h 2 L2�K�. It is a general result in
real analysis that f � h 2 L2�K� if f 2 L1�K�; h 2 L2�K�. Thus Cf is a well-
de®ned operator for f 2 L1�K�, and in particular for f 2 L2�K� since
L2�K� � L1�K�.

For f1; f2 2 L2�K�; let�f1; f2� �
R

K f1�k�f2�k� dk. Also let khkL2 � �h; h��1=2�

and h��x� � h�xÿ1�, for h 2 L2�K�. The following lemma is simple but impor-
tant for our purpose.

Lemma 1.1.4. Let f ; h 2 L2�K�. Then
(i) �Cf �h���k� � �L�kÿ1�f ; h�� for all k 2 K.
(ii) Cf �h� � 0 if and only if h� is orthogonal to the span of K-translates of f.

Proof. (i) follows from a straightforward computation and (ii) follows directly
from (i). �

De®nition 1.1.5 (Non-commutative Fourier transform [1]). Denote by K̂ the set
of equivalence classes of ®nite dimensional continuous irreducible unitary
representations of K. For f 2 L1�K� and p 2 K̂, de®ne the operator in End�p�
by f̂ �p� � RK f �k�p�k� dk. f̂ �p� is called the operator-Fourier coe�cient of f at
p, or simply the Fourier coe�cient of f at p.

Let

L2�K� � �
p2K̂

L�p�

be the isotypic decomposition of the left regular representation of K. According
to the Peter±Weyl theorem, we have

L�p� � p� � � � � p|�������{z�������}
d�p�

;

where d�p� � dim�p�. Each L�p� is preserved by the left convolution operator
Cf . We let Cf ;p � Cf jL�p�.

Theorem 1.1.6. Let f 2 L2�K�. Then the followings are equivalent:
(i) f is cyclic.
(ii) The operator of left convolution by f ;Cf �h� � f � h on L2�K� is bijective.
(iii) Cf ;p : L�p� ! L�p� is invertible for all p 2 K̂.
(iv) f̂ �p� : p! p is invertible for all p 2 K̂.
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Remark. IN (ii), the inverse of Cf may not be bounded. We also note that the
above implies that the set of cyclic vectors in L2�K� is closed under convolution.

Proof. Denote V � spanfL�K�f g, as before.
(i) ) (ii). Suppose V � L2�K�. Let h be a function in L2�K� such that

Cf �h� � 0. By Lemma 1.1.4, h� is orthogonal to the K-translates of f and it will
thus be orthogonal to V. Since V � L2�K�, we see that h� � 0. Therefore h � 0
which implies Cf is injective.

Furthermore Cf preserves L�p�. We claim that Cf �L�p�� � L�p� for all
p 2 K̂, namely Cf is surjective on L�p�. This is because Cf is an injective map on
L�p� and L�p� is ®nite dimensional. Thus L�p� is contained in the image of Cf

for all p. Since L2�K� � �p2K̂L�p�, we see Cf is surjective.
(ii) ) (i). Suppose Cf is bijective. Let h 2 V ?. Then Cf �h�� � 0 again by

Lemma 1.1.4. Since Cf is injective, we have h� � 0 which implies h � 0.
Combining this with the fact that V is closed, we see V � L2�K�.

(ii) ) (iii). Suppose Cf is bijective. For each p 2 K̂;Cf ;p � Cf jL�p� is clearly
injective. Since dim L�p� is ®nite, Cf ;p is invertible.

(iii) ) (ii). Suppose Cf ;p is invertible for all p 2 K̂. Let Cf �h� � 0 for some
h 2 L2�K�. Let h �Pp2K̂ hp be the isotypic decomposition of h. Then for each
p;Cf ;p�hp� � Cf �hp� � 0. Since Cf ;p is invertible in L�p�, we have hp � 0. Thus
h � 0. Surjectivity of Cf also follows easily from the surjectivity of Cf ;p for all
p 2 K̂, as in the proof of (i) ) (ii).

(iii) () (iv). We have L2�K� �Pp2K̂ L�p� and by Peter±Weyl theorem,

L�p� � p� � � � � p|�������{z�������}
d�p�

:

Under this identi®cation, we have

Cf ;p � f̂ �p� � � � � � f̂ �p�|��������������{z��������������}
d�p�

:

Thus Cf ;p is invertible if and only if f̂ �p� is invertible. �

Corollary 1.1.7. Let / be a unitary representation of K in a Hilbert space H,
u 2H. Denote V � spanf/�K�ug. Then the following are equivalent:

(i) /jV � Left regular representation of K,
(ii) fu is a cyclic in L2�K�, where fu�k� � hu;/�k�ui; k 2 K,
(iii) Cfu � the operator of left convolution by fu, is bijective on L2�K�,
(iv) f̂u�/� �

R
Khu;/�k�uip�k� dk is an invertible operator in the representation

space of p for all p 2 K̂.

In fact we can give a stronger but equivalent condition of (iv). To do this, we
pause to prove a general result for compact groups, which can be viewed as an
analog of Bochner's theorem on positive de®nite functions.
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Proposition 1.1.8. Let / be a unitary representation of K in a Hilbert space H,
and u1; . . . ; um 2H. Define fi;j 2 L2�K� by

fi;j�k� � hui;/�k�uji; k 2 K; 16 i; j6m:

(a) Then for any p 2 K̂, and any vectors w1; . . . ;wm in the representation space
of p, we haveX

16 i;j6m

hf̂i;j�p�wj;wiiP 0:

(b) Further assume that K � H , a ®nite group and f/�H�uig16 i6m is linearly
independent. ThenX

16 i;j6m

hf̂ij�p�wj;wii � 0

if and only if wi � 0 for 16 i6m.

Proof. We haveX
16 i;j6m

hf̂ij�p�wj;wii �
X

i;j

Z
K
hui;/�x�ujihp�x�wj;wii dx

�
X

i;j

Z
K

Z
K
hui;/�xÿ1y�ujihp�xÿ1y�wj;wii dx dy

�
X

i;j

Z
K

Z
K
h/�x�ui;/�y�ujihp�y�wj; p�x�wii dx dy:

Here h; i denotes inner product in the appropriate space.
Fix a K equivariant isometric imbedding:

T : p ,! L2�K�
and let bi � T �wi� 2 L2�K�. Then

hp�y�wj; p�x�wii � �L�y�bj; L�x�bi� �
Z

K
bj�yÿ1z�bi�xÿ1z� dz:

ThereforeX
16 i;j6m

hf̂ij�p�wj;wii �
X

i;j

Z
K

Z
K

Z
K
h/�x�ui;/�y�ujibj�yÿ1z�bi�xÿ1z� dx dy dz

�
X

i;j

Z
K

Z
K

Z
K
hbi�xÿ1z�/�x�ui; bj�yÿ1z�/�y�uji dx dy dz

�
Z

K
hc�z�; c�z�i dz P 0;

where c�z� �P16 i6m

R
K bi�xÿ1z�/�x�ui dx. This proves (a).
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We now prove part (b). Recall the normalize Haar measure for a ®nite
group is the counting measure divided by the order of the group. ThusX

16 i;j6m

hf̂ij�p�wj;wii � 0

implies that

c�z� � �1=H�
X

16 i6m

X
x2H

bi�xÿ1z�/�x�ui � 0

for any z 2 H . Since f/�H�uig16 i6m is linearly independent, we see that
bi�xÿ1z� � 0 for x; z 2 H and 16 i6m. Thus bi � 0 for any i. Since T is an
imbedding and bi � T �wi�, we conclude that wi � 0 for 16 i6m. �

Corollary 1.1.7 together with Proposition 1.1.8 (m � 1) imply the following
corollaries.

Corollary 1.1.9. Let / be a unitary representation of K in a Hilbert space
H; u 2H. Denote V � spanfp�K�ug. Then the followings are equivalent:

(i) /jV � Left regular representation of K,
(ii) fu is cyclic in L2�K�, where fu�k� � hu;/�k�ui; k 2 K,
(iii) Cfu � the operator of left convolution by fu, is bijective on L2�K�,
(iv) f̂u�p� �

R
Khu;/�k�uip�k� dk is a positive de®nite operator in the repre-

sentation space of p for all p 2 K̂.

The above results for compact groups will hold in particular for ®nite
groups. In view of Proposition 1.1.1, we obtain the following corollary.

Corollary 1.1.10 (Characterization of MR1). Notations as in Definition 1.2.
The followings are equivalent:

(i) fVkg1k�0 satisfies MR1.
(ii) For all k � 0; 1; . . . ; there exists /k 2 Vk such that the function

f/k
2 L2�Gk� is cyclic, where f/k

�g� � �/k; L�g�/k�, for g 2 Gk.
(iii) For all k � 0; 1; . . . ; there exists /k 2 Vk such that the operator-Fourier

coe�cient f̂/k
�p� � �1=jGkj�

P
g2Gk
�/k; L�g�/k�p�g� is positive de®nite in the

representation space of p for all p 2 Ĝk.

Remark. For M � T , Gk � fei2pl=2k jl � 0; 1; . . . ; 2k ÿ 1g, (iii) states that for
each k, there exists /k 2 Vk such that for all j � 0; 1; . . . ; 2k ÿ 1,P2kÿ1

l�0 �/k; T
l
k/k�ei2pjl=2k

> 0. This is ®rst proved in [2].
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1.2. Characterization of MR2

De®nition 1.2.1. For any p 2 M̂ , ®x an orthonormal basis in the representation
space of p, denoted by fei; i � 1; . . . ; d�p�g. For 16 i; j6 d�p�, de®ne
pij 2 L2�M� by

pij�x� � hei; p�x� eji; x 2 M :

We list below some well-known properties of these matrix coe�cients.

Lemma 1.2.2 [1, p. 129].
(i) For each p 2 M̂ , the collection fd�p�1=2pij j l6 i; j6 d�p�g form an ortho-

normal basis of L�p�.
(ii) The collection fd�p�1=2pij j p 2 M̂ ; l6 i; j6 d�p�g form a complete ortho-

normal basis of L2�M�.
(iii) L�p� � L�r� � 0 if p; r 2 M̂ and p À r.
(iv) pij � pkl � �1=d�p��djkpil, where djk is the Kronicker symbol.

Theorem 1.2.3. Let H be a finite subgroup of M. Let a �Pp2M̂ ;16 i;j6 d�p� apijpij

and b �Pp2M̂ ;16 i;j6 d�p� bpijpij be two functions in L2�M�. Then the followings are
equivalent:

(i) a 2 spanfL�H�bg,
(ii) There exists a function c 2 L2�H� such that for all p 2 M̂ , and

16 i; j6 d�p� we have apij � �c; gpij
�H , where �; �H denotes the inner product in

L2�H� given by

�/1;/2�H �
1

jH j
X
h2H

/1�h�/2�h�;

and gpij
2 L2�H� is given by gpij

�Pd�p�
lÿ1 bpijpiljH .

Remark. If M � T ; H � fei2pl=2k jl � 0; 1; . . . ; 2k ÿ 1g, and write

a �
X
n2Z

â�n� einx; b �
X
n2Z

b̂�n� einx;

then (iii) can be stated as follows: There exists fc�j�g2kÿ1
j�0 such that

â�n� � 1

2k

X2kÿ1

j�0

c�j�b̂�n� eÿi2pjn=2k � cnb̂�n�;

where

cn � 1

2k

X2kÿ1

j�0

c�j� eÿi2pjn=2k
:
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Clearly this is the same as â�n� � cnb̂�n� with fcngn2z being a 2k-periodic se-
quence. This was ®rst proved in [2].

Proof. Let �p;W � be an irreducible unitary representation of M. Fix an or-
thonormal basis fei; i � 1; . . . ; d�p�g of W as in De®nition 1.2.1. Note that
â�p� 2 End�W �. The �i; j� entry of â�p� is given by

�â�p� ej; ei� �
Z
M

a�x��p�x� ej; ei� dx �
Z
M

a�x�pij�x� dx � apij

d�p� :

In particular,

â�p� ej �
Xd�p�
l�1

aplj

d�p� el:

Note that a 2 spanfL�H�bg if and only if there exists c 2 L2�H� such that

a � 1

jH j
X
h2H

c�h�L�h�b:

By the uniqueness of operator Fourier transform, this is equivalent to
â�p� � �1=jH j�Ph2H c�h��L�h�b�^�p� for all p 2 M̂ . The latter is equal to

1

jH j
X
h2H

c�h�p�h�
" #

� b̂�p� � �pc � b̂��p�;

where pc � 1
jH j
P

h2H c�h�p�h� 2 End�U�.
We compute the �i; j� entry of �pc � b̂��p�:

�pc � b̂�p�ej; ei� � pc

Xd�p�
l�1

bplj

d�p� el

 !
; ei

 !
� 1

d�p�
Xd�p�
l�1

bplj�pc�el�; ei�

� 1

d�p�
Xd�p�
l�1

bplj
1

jH j
X
h2H

c�h��p�h� el; ei�

� 1

d�p�
1

jH j
X
h2H

c�h��
Xd�p�
l�1

bpljpil�h�� � 1

d�p� �c; gpij
�H :

Comparing the �i; j� entries of â�p� and �pc � b̂��p�, the result follows. �

We can now characterize MR2. Observe that Vk � Vk�1 if and only if
/k 2 spanfL�Gk�1�/k�1g. Thus we have the following corollary.

Corollary 1.2.4 (Characterization of MR2). Suppose fVkg1k�0 is a sequence of
subspaces of L2�M� satisfying MR1. Write each /k �

P
/pij
�k�pij for

k � 0; 1; . . . ; where pij is as in Definition 1.2.2. Then fVkg1k�0 satisfies MR2 if and
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only if for all k � 0; 1; . . . ; there exists a function ck 2 L2�Gk�1� such that for all
p 2 M̂ , and 16 i; j6 d�p� we have /pij

�k� � �ck; gpij
�k��Gk�1

, where

gpij
�k� �

Xd�p�
l�1

/plj
�k � 1�piljGk�1

:

1.3. Characterization of MR3

Let G be a dense subgroup of M.

Theorem 1.3.1. Let V be a G-invariant subspace of L2�M�. Define the set

X �
\
f2V

fp 2 M̂ jf̂ �p� is singularg:

Then the followings are equivalent:
(i) V � L2�M�:
(ii) X � ;, the empty set.

Remarks: (a) If V � spanfL�G�f g where f 2 L2�M�, then the result of this
theorem reduces to the characterization of cyclic vectors. See Theorem 1.1.6.

(b) The theorem can be viewed as a compact group analog of a result of
Wiener on translation invariant subspaces of L2�R�, see [5].

Proof. �i� ) �ii�. Suppose X 6� ;. Then there exists p 2 M̂ such that f̂ �p� is
singular for all f in V. Observe that the operator norm of f̂ �p� is less than or
equal to jf jL1 6 jf jL2 , and so the map from L2�M� to End (p) given by f 7! f̂ �p�
is continuous. Thus the set of f such that f̂ �p� is singular is a closed set of
L2�G�, and so f̂ �p� is singular for all f 2 �V � L2�M�. Take f0 � d�p��vp;
where vp is the character of the representation p. Then a simple computation
shows that f̂0�p� is the identity operator in the representation space of p. We
thus have contradiction.

(ii) ) (i). Suppose �V 6� L2�M�. Then there exists a non-zero function
h 2 L2�M� which is orthogonal to V. By Lemma 1.1.4, Cf �h�� � 0 for f 2 V .
Pick p 2 M̂ such that the p-isotypic component h�p of h� is not zero. Since Cf

preserves L�p�, we see Cf �h�p� � 0 and so f̂ �p� is not invertible for all f 2 V ,
that is p 2 X: �

Now let Vk; k � 0; 1; . . . ; be a sequence of ®nite dimensional subspaces of
L2�M� satisfying MR1. Observe that �L�x�f �^�p� � p�x�f̂ �p� for x 2 M ;
f 2 L2�M� and p 2 M̂ , we see that f̂ �p� is singular for all f 2 Vk if and only if
/̂k�p� is singular. Thus if we let V � S1k�0 Vk, then we have
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\
f2V

fp 2 M̂ jf̂ �p� singularg �
\1
k�0

fp 2 M̂ j/̂k�p� is singularg:

We therefore have the following corollary.

Corollary 1.3.2 (Characterization of MR3). Assume the notations of Definition
1.2 and fVkg1k�0 satisfies MR1. Then fVkg1k�0 satisfies MR3 if and only if

X �
\1
k�0

fp 2 M̂ j/̂k�p� is singularg � ;;

the empty set.

Remark. In the classical case of M � T and Gk � fei2pl=2k jl � 0; 1; . . . ; 2k ÿ 1g,
then X � T1k�0fn 2 Zj/̂k�n� � 0g. The result again is ®rst proved in [2].

2. Existence and construction of orthonormal wavelets

Let fGkg1k�0 be an MR-group sequence of M, and fVkg1k�0 be a multireso-
lution of L2�M� with respect to fGkg1k�0

De®nition 2.1. A set of functions

[1
k�0

[ak

l�1

f/l
kg

in L2�M� is called orthonormal wavelets if

[1
k�0

[ak

l�1

fL�Gk�/l
kg

is an orthonormal basis of L2�M�.

For k � 0; 1; . . . ; let Wk be the orthogonal complement of Vk in Vk�1 with
respect to the standard inner product of L2�M�. Since Gk preserves the inner
product, Wk is also a Gk module.

By MR3, we have

L2�M� � V0 � �1
k�0

Wk

� �
:

Set tk � jGk�1=Gkj; k P 0:
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Gk acts on Vk and Vk�1 via the restriction of the left regular representation of
M. From MR1, we see that Vk � L2�Gk� as Gk modules. Furthermore since
Vk�1 � L2�Gk�1� as Gk�1 modules, we have

Vk�1 � L2�Gk� � � � � � L2�Gk�|������������������{z������������������}
tk

; and Wk � L2�Gk� � � � � � L2�Gk�|������������������{z������������������}
tkÿ1

as representations of Gk ([6], p. 28 on induced representations).
Let

T : L2�Gk� � � � � � L2�Gk�|������������������{z������������������}
tkÿ1

! Wk

be a unitary Gk-equivariant isomorphism. Denote d1
e � �0; . . . ; 0; de; 0; . . . ; 0�,

where de 2 L2�Gk� is in the lth component and is de®ned by de�x� � 1 for x � e
and zero otherwise. Set /l

k � T �dl
e�, where 16 l6 tk ÿ 1. Then [tkÿ1

l�1 fL�Gk�/l
kg

is an orthonormal basis of Wk. Similarly from V0 � L2�G0�, we can ®nd /0
0 2 V0

such that fL�G0�/0
0�g is an orthonormal basis of V0.

Thus

fL�G0��/0
0�g
[1
k�0

[tkÿ1

l�1

fL�Gk�/l
kg

is an orthonormal basis of L2�M�, and so the set

f/0
0g
[1
k�0

[tkÿ1

l�1

f/l
kg

gives orthonormal wavelets of L2�M�.

2.1. Construction of orthonormal wavelets

Let H be a ®nite group. Let / be a unitary representation of H in a Hilbert
space H. Fix a ®nite set of vectors u1; . . . ; um 2H and let V �
spanf/�H�uig16 i6m. Given a set of functions fcijg16 i;j6m 2 L2�H�, de®ne

vi � 1

jH j
X

16 j6m

X
h2H

cij�h�/�h�uj:

Recall for 16 i; j6m the associated functions fij 2 L2�H� given by
fij�h� � hui;/�h�uji, h 2 H . Similarly de®ne gij 2 L2�H� by gij�h� � hvi;/�h�vji,
h 2 H . The purpose of this section is to construct explicitly fvig16 i6m such that
f/�H�vig16 i6m is an orthonormal basis of V, given a basis f/�H�uig16 i6m of V.

Recall also for any f 2 L2�H�, the operator Fourier transform f̂ �p� at p 2 Ĥ
de®ned by
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f̂ �p� � 1

jH j
X
h2H

f �h�p�h� 2 End�p�:

For any set of linear operators faijg16 i;j6m in a vector space W, denote
A � �aij�16 i;j6m the corresponding matrix. We may view A as an operator in
mW � W � � � � � W|���������{z���������}

m

by the following formula:

A��w1; . . . ;wm�� �
Xm

j�1

a1jwj; . . . ;
Xm

j�1

amjwj

 !
:

Denote F̂ �p� � �f̂ij�p��16 i;j6m, Ĝ�p� � �ĝij�p��16 i;j6m, and Ĉ�p� �
�ĉij�p��16 i;j6m.

Lemma 2.1.1. We have Ĝ�p� � Ĉ�p�F̂ �p�Ĉ�p��t, namely

ĝij�p� �
X

16 k;l6m

ĉik�p�f̂kl�p�ĉjl�p��;

for any p 2 Ĥ , and a� denotes the adjoint operator of a 2 End�p�.

Proof. We compute for x 2 H ,

gij�x� � hvi;/�x�vji � 1

jH j2
X
y;z2H

cik�y�cjl�z�h/�y�uk;/�xz�uli

� 1

jH j2
X
y;z2H

cik�y�cjl�z�fkl�yÿ1xz�:

A simple computation shows that the Fourier coe�cient of the function
fkl�yÿ1xz� at p is p�y�f̂kl�p�p�z��, and hence

ĝij�p� �
1

jH j2
X

k;l

X
y;z2H

cik�y�p�y�f̂kl�p�cjl�z�p�z��

� ĉik�p�f̂kl�p�ĉjl�p��: �

Proposition 2.1.2. f/�H�vig16 i6m is an orthonormal basis of V if and only if

Ĉ�p�F̂ �p�Ĉ�p��t � 1

jH j

Id�p� 0 � � � 0
0 Id�p� � � � 0
� � � � � � � � � � � �

0 0 � � � Id�p�

0BB@
1CCA

for all p 2 Ĥ . Here Id�p� is the identity operator in the representation space of p.
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Proof. Clearly f/�H�vig16 i6m is orthonormal if and only if gij � dijde, where
dij � 1; 0 depending on whether i is equal to j, and de�x� � 1 if x � e and zero
elsewhere. By the uniqueness of operator Fourier transform, it is in turn
equivalent to ĝij�p� � dijd̂e�p� � �1=jH j�dijId�p� for all p 2 Ĥ , namely

Ĝ�p� � 1

jH j

Id�p� 0 � � � 0
0 Id�p� � � � 0
� � � � � � � � � � � �

0 0 � � � Id�p�

0BB@
1CCA:

From Lemma 2.1.1, we see that this is equivalent to

Ĉ�p�F̂ �p�Ĉ�p��t � 1

jH j

Id�p� 0 � � � 0
0 Id�p� � � � 0
� � � � � � � � � � � �

0 0 � � � Id�p�

0BB@
1CCA

for all p 2 Ĥ . �

Now suppose that f/�H�uig16 i6m is linearly independent. From Proposition
1.1.8, we see that F̂ �p� is positive de®nite as an operator in the representation
space of mp � p� � � � � p|�������{z�������}

m

.

Theorem 2.1.3. Let H be a finite group, and / be a unitary representation of H in
a Hilbert space H. Let u1; . . . ; um 2H such that f/�H�uig16 i6m is linearly in-
dependent, and denote V � spanf/�H�ujg16 j6m. For any p 2 Ĥ , let

P �p� � �pij�p��16 i;j6m �
1�������jH jp F̂ �p�ÿ1=2;

where pij�p� 2 End�p�. Let cij 2 L2�H� be given by

cij�h� �
X
p2Ĥ

d�p�tr�pij�p�p�hÿ1��; h 2 H ;

and tr denotes the trace of an operator. Then the vectors

vi � 1

jH j
X
h2H

cij�h�/�h�uj

generate an orthonormal basis f/�H�vjg16 j6m for V.
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Proof. By our construction,

P �p�F̂ �p�P �p��t � 1

jH j

Id�p� 0 � � � 0
0 Id�p� � � � 0
� � � � � � � � � � � �

0 0 � � � Id�p�

0BB@
1CCA:

The Fourier inversion formula [1, p. 131] implies that ĉij�p� � pij�p�, for p 2 Ĥ .
Hence we have

Ĉ�p�F̂ �p�Ĉ�p��t � 1

jH j

Id�p� 0 � � � 0
0 Id�p� � � � 0
� � � � � � � � � � � �

0 0 � � � Id�p�

0BB@
1CCA:

Proposition 2.1.2 then implies the result. �

2.2. Construction of stationary multiresolution and wavelets from cyclic vectors

Recall the notion of cyclic vectors of L2�M� (Section 1.1). We ®rst give a
concrete description of the set of cyclic vectors of L2�M�.

Fix p 2 M̂ . De®ne for each d�p� � d�p� invertible matrix A � �aij� the
function

fp;A � d�p�1=2

jAj
Xd�p�
i;j�1

aijpij;

where

jAj �
�����������������Xd�p�
i;j�1

jaijj2
vuut :

Note that jfp;AjL2 � 1.
De®ne the following subset of L2�M�:

C�M� �
X
p2M̂

apfp;A; ap

(
6� 0; �ap� 2 l2�M̂�; A 2 GLd�p��C�

)
:

Notice that the summation
P

p2M̂ apfp;A converges to some function in L2�M�
by the well-known Riesz±Fischer theorem.

Proposition 2.2.1. f is cyclic in L2�M� if and only if f 2 C�M�.

30 A. Lim, C.-B. Zhu / Linear Algebra and its Applications 293 (1999) 15±38



Proof. Write f �Pp2M̂ ;16 i;j6 d�p� apijpij, Then we have

�f̂ �p� ej; ei� �
Z

M
f �x�pij�x� dx � apij

d�p� :

By Theorem 1.1.6, f is cyclic if and only f̂ �p� is invertible for all p 2 M̂ , and
thus it is equivalent to the fact that the matrix �apij�16 i;j6 d�p� is invertible for all
p 2 M̂ . The proposition clearly follows after a normalization. �

Theorem 2.2.2. Let f be a cyclic vector of L2�M�. Let H be a finite subgroup of
M. Then the representation of H on V � spanfL�H�f g is equivalent to the left
regular representation of H on L2�H�.

Proof. By Proposition 1.1.1, it su�ces to show that the set fL�H�f g is linearly
independent. Suppose that there exists ch 2 C for each h 2 H such thatP

h2H chL�h�f � 0. Construct an open neighborhood Ne about the identity e of
M such that Ng \ Nh � ; for all distinct g; h in H, where Ng � fgÿ1v0; v 2 Neg.
De®ne the function q 2 L2�M� as follows:

q�x� � ch if x 2 Nh;
0 if x 62 [h2H Nh:

�
Let f ��x� � f �xÿ1�, then we have f̂ ��p� � �f̂ �p��� for any p 2 M̂ , where �f̂ �p���
denotes the adjoint operator of f̂ �p� with respect to the inner product in the
representation space of p. Thus f � is also cyclic, and so the operator Cf � is
bijective.

We compute

�Cf � �q���g� �
Z

M
f ��gxÿ1�q�x� dx

�
X
h2H

Z
Nh

f ��gxÿ1�ch dx �
X
h2H

Z
Ne

f ��gxÿ1h�ch dx

�
Z

Ne

X
h2H

ch�L�h�f ��xgÿ1� dx � 0:

Since Cf � is bijective, we have q � 0. Therefore ch � 0 for all h 2 H . Thus
fL�H�f g is linearly independent. �

Theorem 2.2.3. Let f be a cyclic vector in L2�M�. Define Vk � spanfL�Gk�f g
for k � 0; 1; . . . Then fVkg1k�0 is a multiresolution of L2�M� with respect to
fGkg1k�0.

Proof. The above proposition says that fVkg1k�0 satis®es MR1. Clearly since
Gk � Gk�1, we have Vk � Vk�1. Thus MR2 is also satis®ed. Finally let
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V �
[1
k�0

Vk �
[1
k�0

spanfL�Gk�f g � spanfL�G�f g:

Thus

V � spanfL�G�f g � spanfL�M�f g � L2�M�
for f is a cyclic vector. �

Remark. A multiresolution given in Theorem 2.2.3 is called stationary.

Now let fGkg1k�0 be an MR-group sequence of M. Let f be a cyclic vector of
L2�M� and let it generate a stationary multiresolution as in above, namely
Vk � spanfL�m�f ; m 2 Gkg for k � 0; 1; . . . We shall construct an orthonormal
wavelet basis of L2�M� as follows:

For each k, we construct /0
k 2 Vk such that fL�Gk�/0

kg is an orthonormal
basis for Vk. See Section 2.1. Recall the space Wk, the orthogonal complement of
Vk in Vk�1. The projection Pk of Vk�1 onto Wk is given by

Pk�q� � qÿ
X
g2Gk

hq; L�g�/0
kiL�g�/0

k :

Note that the map Pk is Gk equivariant, namely L�m�Pk�q� � Pk�L�m�q� for all
m 2 Gk. Since

Wk � spanfPk�L�m�f �; m 2 Gk�1g � spanfPk�L�m�f �; m 2 Gk�1 ÿ Gkg;
we see by dimension counting that fPk�L�m�f �; m 2 Gk�1 ÿ Gkg is linearly in-
dependent, and so form a basis of Wk. Choose a set of representatives
fxi : i � 0; 1; . . . ; tk ÿ 1g for the quotient Gk�1=Gk , where x0 � e: Let

wi
k � Pk�L�xi�f � � L�xi�f ÿ

X
g2Gk

hL�xi�f ; L�g�/0
kiL�g�/0

k ; 16 i6 tk ÿ 1:

Since Pk�L�Gkxi�f � � L�Gk�wi
k, we see that fL�Gk�wi

kg16 i6 tkÿ1 form a basis of

Wk. We construct /i
k, 16 i6 tk ÿ 1, such that fL�Gk�/i

kg16 i6 tkÿ1 is an ortho-
normal basis of Wk (see Section 2.1). Then

fL�G0�/0
0g [

[1
k�0

[tkÿ1

l�1

fL�Gk�/l
kg

( )
is an orthonormal basis of L2�M�.

3. A non-abelian example

Consider the in®nite dihedral group D1 and its subgroups Dn de®ned to be
the following subgroups of GL2�C� with generators:
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D1 � hra; s j a 2 �0; 2p�i; Dn � hr2p=n; si;

where

ra � eia 0
0 eÿia

� �
for a 2 �0; 2p�, and

s � 0 1
1 0

� �
:

A moment's re¯ection shows that D1 is isomorphic to the semi- direct product
ToZ2, where T � fra j a 2 �0; 2p�g and Z2 � f1; sg, and Dn � ZnoZ2. In fact,
D1 is isomorphic to O2, the full orthogonal group in dimension two. Also as a
set, D1 � fra; sra j a 2 �0; 2p�g and Dn � r2pk=n; sr2pk=n j k � 0; 1; . . . ; nÿ 1

� 	
.

Clearly fD2kg1k�0 is an MR-group sequence of D1 (cf. Example b in Section 1).

3.1. Facts about representations of D1 and Dn; n even

We refer the reader to [6] for the following facts.
(a) Characters of D1. There are two irreducible representations of D1 of

degree one with the characters:

g1�x� � 1; x 2 D1; g2�x� � det�x� � 1; x � ra;
ÿ1; x � sra:

�
For each natural number m 2 N, there is an irreducible representation pm of
degree two with the character

vm�x� � 2 cos�ma�; x � ra;
0; x � sra:

�
The representation pm has the following matrix realization:

pm�ra� � eima 0
0 eÿima

� �
; pm�s� � 0 1

1 0

� �
:

Thus

pm�sra� � 0 eÿima

eima 0

� �
:

All irreducible representations of D1 are of the form g1; g2; fpmgm2N.
(b) Characters of Dn, n even. There are four irreducible representations of Dn

of degree one with the characters:
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c1�x� � 1; x 2 Dn; c2�x� � 1; x � r2pk=n;
ÿ1; x � sr2pk=n;

�

c3�x� � �ÿ1�k; x � r2pk=n;
sr2pk=n;

�
c4�x� � �ÿ1�k; x � r2pk=n;

�ÿ1�k�1
; x � sr2pk=n:

(

For each j � 1; 2; . . . ; �n=2� ÿ 1, there is an irreducible representation rj of
degree two with the character

nj�x� � 2 cos�2pjk
n �; x � r2pk=n;

0; x � sr2pk=n:

�
All irreducible representations of Dn for n even are of the form

fcig4
i�1; frjgn=2ÿ1

j�1 :

We now describe how representations of D1 behave under restriction to Dn

for n even. We have

g1jDn � c1; g2jDn � c2;

For any m 2 N, let 06 j6 n=2 be such that m � �j (mod n). Then

vmjDn
�

nj; j � 1; . . . ; n=2ÿ 1;
c1 � c2; j � 0;
c3 � c4; j � n=2:

8<:
3.2. A multiresolution of L2�D1� with respect to fD2kg1k�0

Recall the irreducible representation pm of D1 for m 2 N. We de®ne the
matrix coe�cients fpm

ijg2
i;j�1 of pm by

pm�x� � pm
11�x� pm

12�x�
pm

21�x� pm
22�x�

� �
for x 2 D1. Thus we have

pm
11�x� � eima; x � ra;

0; x � sra;

�
pm

12�x� �
0; x � ra;
eÿima; x � sra:

�

pm
21�x� �

0; x � ra;
eima; x � sra;

�
pm

22�x� � eÿima; x � ra;
0; x � sra:

�
For even n, de®ne the functions gn

3; g
n
4; f

n
3; f

n
4 2 L2�D1� by
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gn
3�x� � pn=2

11 � pn=2
21

� �
�x� � ei�n=2�a if x � ra; sra;

gn
4�x� � pn=2

11 ÿ pn=2
21

� �
�x� � ei�n=2�a; x � ra;

ÿei�n=2�a; x � sra:

�
fn

3�x� � pn=2
22 � pn=2

12

� �
�x� � eÿi�n=2�a if x � ra; sra;

fn
4�x� � pn=2

22 ÿ pn=2
12

� �
�x� � eÿi�n=2�a; x � ra;

ÿeÿi�n=2�a; x � sra:

�
Obviously we have

L�x��g1� � c1�x�g1; L�x��g2� � c2�x�g2; x 2 Dn:

Here and as before L stands for the left regular representation of D1 on
L2�D1�. A direct computation (on generators of Dn) also yields

L�x��gn
3� � c3�x�gn

3; L�x��fn
3� � c3�x�fn

3; x 2 Dn;

L�x��gn
4� � c4�x�gn

4; L�x��fn
4� � c4�x�fn

4; x 2 Dn:

For m 2 N, denote by L�m� the isotypic component of pm in L2�D1�. By Peter±
Weyl Theory, dim L�m� � 4 and it is spanned by fpm

ijg2
i;j�1.

Theorem 3.2.1. Define

V0 � Cg1 � Cg2;

Vk � Cg1 � Cg2 � Cg2k

3 � Cg2k

4 � �2kÿ1ÿ1

m�1
L�m�

� �
; k � 1; 2; . . .

Then fVkg1k�0 is a multiresolution of L2�D1� with respect to fD2kg1k�0.

Proof. MR1: Observe that Vk contains exactly each irreducible representation r
of D2k with multiplicity equal to dim r. Thus Vk � L2�D2k � as D2k modules.

Take /0 � g1 � g2, and /k � g1 � g2 � g2k

3 � g2k

4 �
P2kÿ1ÿ1

m�1 vm for k P 1, then
Vk � spanfL�D2k �/kg by the characterization of cyclic vectors on a ®nite group.
See Theorem 1.1.6.

MR2: We have by de®nition

Vk � Cg1 � Cg2 � Cg2k

3 � Cg2k

4 � �2kÿ1ÿ1

m�1
L�m�

� �
;

Vk�1 � Cg1 � Cg2 � Cg2k�1

3 � Cg2k�1

4 � �2
kÿ1

m�1
L�m�

� �
:
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Observe that

L�2kÿ1� � spanfp2kÿ1

11 ; p2kÿ1

12 ; p2kÿ1

21 ; p2kÿ1

22 g
� spanfg2k

3 ; g
2k

4 ; f
2k

3 ; f
2k

4 g:

Therefore we have Vk � Vk�1.
MR3: Clearly [1k�0Vk contains D1-isotypic components of g1; g2, namely

Cg1
;Cg2

, and L�m�, the pm isotypic component of L2�D1� for any m 2 N.
Thus[1

k�0

Vk � L2�D1�: �

To construct a wavelet basis of L2�D1�, we write Vk�1 � Vk � Wk, where Wk is
the D2k -invariant subspace de®ned by

W0 � Cg2
3 � Cg2

4;

Wk � Cg2k�1

3 � Cg2k�1

4 � Cf2k

3 � Cf2k

3 � �2
kÿ1

m�2kÿ1�1
L�m�

� �
; k P 1:

We then have L2�D1� � V0 � ��1k�0Wk�, and Wk � L2�D2k � as D2k modules (cf.
Section 2.1). Notice that

g2k�1

3 D2k

��� � c1; g2k�1

4

���D2k � c2;

and f2k

3 ; f
2k

4 transform according to the characters c3; c4 of D2k . Notice also that

�2
kÿ1

m�2kÿ1�1
L�m� � �2kÿ1ÿ1

j�1
L�2k ÿ j� � �2kÿ1ÿ1

j�1
L�j�

as D2k modules.
Let

/0 � g1 � g2;

w0 � g2
3 � g2

4;

wk � g2k�1

3 � g2k�1

3 � f2k

3 � f2k

4 �
X2kÿ1

m�2kÿ1�1

vm; k P 1:

Then V0 � spanfL�D0�/0g and Wk � spanfL�D2k �wkg for all k P 0, and so

L�D0�/0g [
[1
k�0

fL�D2k �wk

( )( )
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is a wavelet basis of L2�D1� with respect to the MR-group sequence
fD2kg1k�0.

4. Concluding remarks

(a) By using the classi®cation of ®nite subgroups of SO3, one can show that
SO3 does not possess any MR-group sequence. We outline such an argument.
As a ®nite subgroup of SO3, each Gk must be isomorphic to one of the fol-
lowing subgroups: (1) Zn, (2) Dn, (3) A4, (4) A5, (5) S4 (see [1], p.18). The di-
mensions of irreducible representations of all the groups listed above have a
uniform bound. If fGkg1k�0 is an MR-group sequence of SO3, then any irre-
ducible representation of SO3 is irreducible when restricted to Gk for k large
enough. Thus the dimensions of irreducible representations of Gk for all k will
have to be unbounded, which is a contradiction.

(b) In view of (a), our theory of multiresolution on compact groups is
probably more suited for compact groups which are semi-direct products than
for compact semi-simple groups such as SO3. Our example in x3 illustrates
this point and as well as the usefulness of the notion of multiresolution for
the in®nite dihedral group, which is the semi-direct product of the torus with
Z2.

(c) Finally we would like to point out that most of our results actually do
not depend on the hypothesis that the MR-group sequence fGkg1k�0 exists in M.
More speci®cally, with the exception of Section 1.3. Characterization of MR3,
our results are stated in the general setup of either a compact group K, or a
compact group M and a ®nite subgroup H. See for example Theorems 1.1.6,
2.1.3, and 2.2.2. They are thus of independent interest.
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