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Abstract

Given a compact group M, we define the notion of multiresolution of L2(M) with
respect to an infinite sequence of subgroups Gy, C G; C G, C - - - such that G = U2 G, is
a dense subgroup of M. We give characterizations of various axioms of multiresolution,
demonstrate the existence and give the construction of a wavelet basis for L?(M). We
also construct stationary multiresolution and wavelets from cyclic vectors. An example
of multiresolution on a non-abelian compact group is given for the infinite dihedral
group, or isomorphically the real orthogonal group in dimension two. © 1999
Published by Elsevier Science Inc. All rights reserved.
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0. Introduction

The idea of multiresolution analysis introduced by Mallat [4] has proved to
be a fundamental tool in the construction of wavelet, and has been extended in
many directions. In [2], Koh et al. examined the multiresolution of L2(]0, 2x)),
the space of square integrable 2n-periodic functions, and proved some very
simple yet elegant results. We recall the basic definition below.

For k =0,1,2,..., define the operator T} : L*([0,2r)) — L*([0,27n)) by
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A sequence of subspaces {V} : k € Z} of L*([0,2n)) is called a multiresolution
(MR) of L*(]0,2nr)) if the following conditions hold:

MRI1: dim ¥4 = 2% and there exists ¢, € V; such that the set {7}, : | =0,
l,...,25 — 1} is a basis of V; for each k,

MR2: V; C Vo1, Vk = 0,1,2,...,

MR3: U=} = 12([0, 27)).

Note that the set {7/ :/=0,1,...,2* — 1} forms a group of unitary oper-
ators of L*([0,2n)), and is isomorphic to Zx, the cyclic group of order 2¥, or
isomorphically the group of 2*th roots of unity.

This paper is an attempt to extend the notion of multiresolution and to
study their basic properties in a different direction, and is based on the ob-
servation that results in [2] are essentially group theoretical in nature, and can
be better understood in the context of compact groups. To this end, we shall
need to employ Peter—Weyl theory of representations of compact groups and
operator Fourier transforms in the place of traditional Fourier series analysis.

1. Multiresolution of L2(M) with respect to a MR-group sequence

Throughout this paper, let M be a compact group. We normalize the Haar
measure on M so that the total volume of M is 1. Denote L*(M) the space of L?
functions of M with respect to the Haar measure.

Definition 1.1 (MR-group sequence). A sequence of finite subgroups of M,
{G}2, is called an MR-group sequence of M if the following conditions are
satisfied:

1) Gy C Gy, Vb =0,1,...,

(2) G = U2, Gy is a dense subgroup of M.

Examples. (a) Let T be the one dimensional torus:
T={teC”: |t =1},

and G, = {t € C*|¢ =1} = {e?/*|1 =0,1,...,25 — 1}. Then {G};", is an
MR-group of sequence of 7. More generally let #; = {t € C*|¢* = 1}. Then
{U,,}=, is an MR-group sequence of 7 if and only if my|my., Vk,
and m; — oo as k — oo.

(b) Fix any compact abelian group 4 and an MR-group sequence {Gy},-,
of A. Given an action of a finite group B on A, namely a homomorphism



A. Lim, C.-B. Zhu | Linear Algebra and its Applications 293 (1999) 15-38 17

b — a(b) of B into the group of automorphisms of A, define the semi-direct
product of 4 and B with respect to the action ¢ as follows:

Ax,B={(a,b)|acdbeB}

with the group law
(al,bl) : (az,bz) = (ala(bl)(aZ)ablb2)~

Suppose the action ¢ preserves each Gj, then we may form the subgroups
Gy %, B. Clearly {G; x, B}~ is an MR-group sequence of 4 x, B.
Let L : M — U(L*(M)) be the left regular representation of M in L*(M):

(L(&)f)x)=f(g"'x), [feLl’ (M), gxeM,

where U(L*(M)) denotes the group of unitary operators on L*(M).

Definition 1.2 (Multiresolution of L*(M) with respect to {Gi}-,). Let {Gi},—,
be an MR-group sequence of M. Let V;,k=0,1,..., be a sequence of finite
dimensional subspaces of L*(M). Then {V;},-, is called a multiresolution of
L*(M) with respect to {Gy},-, if the following conditions hold:
MR1: dim ¥, = |G| and there exists ¢, € V; such that the set {L(G;)¢,} is a
basis of V} for each k,
MR2: Vi C Vioy, Yk =0, 1,..
MR3: U=,V = L2(M).

)

1.1. Characterization of MRI

Let H be a finite subgroup of M and ¢ be a representation of H in a Hilbert
space #. Let u,...,u, € # and S = {¢p(H)u;},_;,. Consider the H-in-
variant space V' = span S.

Denote L the left regular representation of H.

Proposition 1.1.1. The followings are equivalent:
(1) S is linearly independent.
) ¢|V=2L&---®L, the direct ' ] "th tation L.
(i) ¢| DD e direct sum of m copies of the representation

m

Proof. Suppose S is linearly independent. Let C[H] be the group algebra of H,
where H acts by left translation. Recall that for a finite H, this is another re-
alization of the left regular representation of H. Define a map

T:CH]&---®CH|—-V

m
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as follows: T((hy,...,hy)) = ¢(h)uy + -+ ¢(hy)u, for hy,... h, € H, and
extend 7 multi-linearly. 7 is clearly surjective and H-intertwining. 7 is easily
seen to be injective since S is linearly independent. Thus

¢l, =2CH® - - ®CH|=L® - --DL.

m m

Note that dim V < m|H|. However (ii) implies dim ¥ = m|H| so S must be
linearly independent. [

We now consider the following more general setting, but with the number of
vectors m = 1:

Let K be a compact group and ¢ be a unitary representation of K in a
Hilbert space # with the inner product (,). Let u be a non-zero vector in J#.
Consider the K-invariant closed subspace V' = span{¢(K)u}.

Question. When is ¢|, = Left regular representation of K?

The next proposition is quite standard. We give a proof for the sake of
completeness.

Proposition 1.1.2. Define the map T :V — L*(K) by T(v)(k) = (v, p(k)u),
k € K. Then
(1) T is a K-equivariant imbedding.
(i) T(V)=span{L(K)f,}, where f, = T(u) € L*(K) is given by f,(k)=
(u, p(k)u), k € K.
(iil) |, is contained in the left regular representation of K.

Proof. One can easily check T'is a K-map. To see 7 is injective, let T'(v) = 0 for
some v € V. Then (v, ¢(k)u) = 0 for all k in K. Thus v € V'*, the orthogonal
complement of V' in . Since v € V,v must be zero.

Since V is the closed span of ¢(k)u, where k € K, and since T is a K-equi-
variant imbedding, we see 7(7) must be the closed span of L(K)T(u). We thus
have (ii).

(iii) follows directly from (i). O

Definition 1.1.3 (Cyclic vectors of L*(K)). Let f € L*(K). We say f'is a cyclic
vector of L?(K) if span{L(K)f} = L*(K).

From Proposition 1.1.2, we see that ¢|, = Left regular representation of K,
if and only if £, is a cyclic vector of L*(K), where f, (k) = (u, p(k)u), k € K.

For f € L'(K). Define the operator C; in End(L*(K)), the algebra of linear
operators of L*(K), by
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where dk is the normalized Haar measure on K. Evidently C; is the operator of
left convolution by f on [L*K). Namely Cs(h)(x)=(f*h)(x)=
S fDh(y'x) dy = [, f(xy~")h(y) dy, where h € L*(K). It is a general result in
real analysis that f «h € L*(K) if /€ L'(K),h € L*(K). Thus C; is a well-
defined operator for f € L'(K), and in particular for f € L*(K) since
I2(K) C L'(K).

For fi,f> € I2(K),let(fi, /2) = [ fi(k)fo(k) dk. Also let ||, = (h, )"/
and h*(x) = h(x~1), for h € L*(K). The followmg lemma is simple but impor-
tant for our purpose.

Lemma 1.1.4. Let f,h € L*(K). Then
(@) [C/(M)](k) = (L(k™)/, k) for all k € K.
(i) Cr(h) = 0 if and only if h* is orthogonal to the span of K-translates of f.

Proof. (i) follows from a straightforward computation and (ii) follows directly
from (i). O

Definition 1.1.5 (Non-commutative Fourier transform [1]). Denote by K the set
of equivalence classes of finite dimensional continuous irreducible unitary
representations of K For f € L'(K) and 7 € K, define the operator in End(n)
by f =[.f X ) dk. f (m) is called the operator-Fourier coefficient of fat
7, Or 51mp1y the Fourler coefficient of f at .

be the isotypic decomposition of the left regular representation of K. According
to the Peter—Weyl theorem, we have

Lin)2nd. - D,
—————
d(m)

where d(n) = dim(n). Each L(=n) is preserved by the left convolution operator
Cf. We let Cf,n = Cf|L(n)

Theorem 1.1.6. Let f € L*(K). Then the followings are equivalent:
(1) f is cyclic.
(ii) The operator of left convolution by f,Cr(h) = f * h on L*(K) is bijective.
(iii) Cyr : L(m) — L(n) is invertible for all n € K.
(iv) f(n) : m — 7 is invertible for all w € K.
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Remark. IN (ii), the inverse of C; may not be bounded. We also note that the
above implies that the set of cyclic vectors in L*(K) is closed under convolution.

Proof. Denote V' = span{L(K)f}, as before.

(i) = (ii). Suppose V = L*(K). Let h be a function in L?(K) such that
C;(h) =0. By Lemma 1.1.4, #* is orthogonal to the K-translates of f'and it will
thus be orthogonal to V. Since V = L*(K), we see that h* = 0. Therefore 4 = 0
which implies C, is injective.

Furthermore C; preserves L(m). We claim that C,(L(n)) = L(n) for all
n € K, namely C '+ is surjective on L(n). This is because C is an injective map on
L(n) and L(r) is finite dimensional. Thus L() is contained in the image of C,
for all 7. Since L*(K) = ®,.¢L(n), we see C; is surjective.

(i)) = (i). Suppose C; is bijective. Let 2 € V*. Then C;(h*) = 0 again by
Lemma 1.1.4. Since C, is injective, we have #* =0 which implies 4 = 0.
Combining this with the fact that V is closed, we see V = L*(K).

(if) = (iii). Suppose C; is bijective. For each n € K, Crr=Cyl L(n) 18 clearly
injective. Since dim L(x) is finite, C;, is invertible.

(iii) = (ii). Suppose C;, is invertible for all = € K. Let C;(h) = 0 for some
h e L*(K). Let h =3 _¢h, be the isotypic decomposition of 4. Then for each
7, Cr n(hy) = Cy(h,) = 0. Since C;, is invertible in L(x), we have h, = 0. Thus
h = 0. Surjectivity of C, also follows easily from the surjectivity of C; , for all
n € K, as in the proof of (i) = (ii).

(iii) < (iv). We have L*(K) = > _¢ L(n) and by Peter—Weyl theorem,

Lin)2n®---dn.
d(m)

Under this identification, we have

Crn2f(m) @ & f(m).
d(m)

Thus C; is invertible if and only if £(r) is invertible. [

Corollary 1.1.7. Let ¢ be a unitary representation of K in a Hilbert space H# ,
u € H. Denote V = span{¢(K)u}. Then the following are equivalent:

(i) ¢|, = Left regular representation of K,

(i) f, is a cyclic in L*(K), where f,(k) = (u, p(k)u), k € K,

(iii) C;, = the operator of left convolution by f,, is bijective on L*(K),

(iv) £,(¢) = Ji(u, p(k)uyn(k) dk is an invertible operator in the representation
space of © for all © € K.

In fact we can give a stronger but equivalent condition of (iv). To do this, we
pause to prove a general result for compact groups, which can be viewed as an
analog of Bochner’s theorem on positive definite functions.
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Proposition 1.1.8. Let ¢ be a unitary representation of K in a Hilbert space H,
and uy, ..., u, € A. Define f;; € L*(K) by

fijk) = (ui, p(k)uy), k€ K, 1<i, j<m.

(@) Then for any n € K, and any vectors wy, . . ., w, in the representation space
of m, we have

Z (flj WJ’WI

1<ij<m

(b) Further assume that K = H, a finite group and {¢p(H)u;}, ., is linearly
independent. Then

Z <./1;] Wj,W, -

1<ij<m

if and only if w; =0 for 1 <i<m.
Proof. We have

> Uilmmwm) = 3 [ g (e )

1<ij<m

-2 [ gt sy mta ) dx
=5 [ [ @t0u 400 (e, ey ax

Here (,) denotes inner product in the appropriate space.
Fix a K equivariant isometric imbedding:

T:m— L*(K)
and let b; = T(w;) € L*(K). Then

(x(y)w;, m(x)wi) = (L()by L(x) / by ()b Tz) de.
Therefore

1<,Z<m<f” Yy, wi) Z///¢> Vs, () by )b 17) dr dy dz
=5 [ [ [t 5T e b av
- /K<c (2),e(z)) dz >0,

where ¢(z) = 32, ;.. Jx bi(x'z)$(x)u; dx. This proves (a).
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We now prove part (b). Recall the normalize Haar measure for a finite
group is the counting measure divided by the order of the group. Thus

Z iy (mpwy, wi) =

1<ij<m

implies that

=(1/H) Y Y bl 2)p(x)u; =0

1<i<m xeH

for any z€ H. Since {¢(H)u;},,, is linearly independent, we see that
bi(x7'z) =0 for x,z€ H and 1<i<m. Thus b, =0 for any i. Since T is an
imbedding and b; = T(w;), we conclude that w; =0 for 1 <i<m. O

Corollary 1.1.7 together with Proposition 1.1.8 (m = 1) imply the following
corollaries.

Corollary 1.1.9. Let ¢ be a unitary representation of K in a Hilbert space
H,u € A . Denote V = span{n(K)u}. Then the followings are equivalent:

(i) ¢|, = Left regular representation of K,

(i) £, is cyclic in L*(K), where f,(k) = (u, p(k)u), k € K,

(i) Cy, = the operator of left convolution by f,, is bijective on L*(K),

(iv) f = [ (u, n(k) dk is a positive definite operator in the repre-
sentation space of m for all nek.

The above results for compact groups will hold in particular for finite
groups. In view of Proposition 1.1.1, we obtain the following corollary.

Corollary 1.1.10 (Characterization of MR1). Notations as in Definition 1.2.
The followings are equivalent:
(1) {Vi},—, satisfies MR1.

(1) For all k=0,1,..., there exists ¢, € Vi such that the function
Jo, € L*(Gy) is cyclic, where [y, () = (¢r, L(2)Py), for g € Gy
(iii) For all k=0,1,..., there exists ¢, € Vi such that the operator-Fourier

coefficient f¢k(n) = (1/|Gk]) Xoge, (b4, L(g)Px)(g) is positive definite in the

representation space of n for all m € G;.

Remark. For M =T, G, = {e/*|1 =0,1,...,2F — 1}, (iii) states that for
each k, there exists ¢, € Vi such that for all j=0,1,...,2x -1,
2 o' (¢4, TLop, )€/ > 0. This is first proved in [2].
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1.2. Characterization of MR2

Definition 1.2.1. For any 7 € M, fix an orthonormal basis in the representation
space of =, denoted by {e; i=1,...,d(n)}. For 1<i,j<d(n), define
Tj S L2 (M) by

m;(x) = (e, n(x) ¢;), x€M.
We list below some well-known properties of these matrix coefficients.

Lemma 1.2.2 [1, p. 129].

(i) For each € M, the collection {d(n)"*n; |1<i,j <d(n)} form an ortho-
normal basis of L(r).

(ii) The collection {d(n)l/znij | me M,1<i,j<d(n)} form a complete ortho-
normal basis of L*(M).

(iii) L(n) * L(6) =0 if m,6 € M and © % o.

(iv) my; * Ty = (1/d(n))dumy, where 0y is the Kronicker symbol.

Theorem 1.2.3. Let H be a finite subgroup of M. Let o=} | <. an) @y Tij
and =73 i1 <ij<an bmy T be two functions in L*(M). Then the followings are
equivalent:

(i) o € span{L(H)B},

(i) There exists a function ¢ € L*(H) such that for all n €M, and
1<i,j<d(n) we have a,, = (c,n,, )y, where (,), denotes the inner product in
L*(H) given by

1 [
(d)la ¢2)H - H Z ¢l(h)¢2(h)7

heH

and n,,, € L*(H) is given by 1, = S0 By | H.

Remark. If M = T, H = {2/?'|| =0,1,...,2% — 1}, and write

a=Yan) & =3 fln) e,

nez nez
then (iii) can be stated as follows: There exists {c(;)}figl such that
1 2k—1 R . R
a(n) =5 E;C(/)ﬁ(n) e P = ¢, f(n),
=
where
1 2k—1

c, = ? Zc(j) efi27zjn/2k.

Jj=0



24 A. Lim, C.-B. Zhu | Linear Algebra and its Applications 293 (1999) 15-38

Clearly this is the same as &(n) = ¢,f(n) with {c,}
quence. This was first proved in [2].

being a 2f-periodic se-

nez

Proof. Let (7, W) be an irreducible unitary representation of M. Fix an or-
thonormal basis {e;; i =1,...,d(n)} of W as in Definition 1.2.1. Note that
a(n) € End(W). The (i, j) entry of d(n) is given by

Az,

(a(n) ¢, ) = /Of(x)(ﬂ(x) ¢, ) dx = /O‘(x)m dv = d(ﬁ)'

In particular,

U

@ g,

7 d(m)

Note that o € span{L(H)p} if and only if there exists ¢ € L*(H) such that
)L(h)B

i Sl

heH

a(m) e; = e.

-
I

h)p

By the uniqueness of operator Fourier transform, this is equivalent to
a(r) = (1/|H|) X ey c(B)(L(R)B)" (=) for all = € M. The latter is equal to

[le ] () = (re 0 f)()

heH

where 7. = 7 37, c(h)n(h) € End(U).
We compute the (i, j) entry of (m. o f)(n):

. - 1 d(n)
(m. 0 f(n)e;, €)= ( (Z d( ) ) :m lz:;bmj(ﬂ:c(&), ei)
1 d(m)
= W Z LIV ATTT |H‘ ; ela ei)
1
= |H| heZH mejﬂ?,] (TE)( 1711,,)

Comparing the (i, j) entries of &(n) and (m. o f§)(n), the result follows. [

We can now characterize MR2. Observe that V; C V,,; if and only if
¢ € span{L(Gi+1)¢i,, ). Thus we have the following corollary.

Corollary 1.2.4 (Characterization of MR2). Suppose {Vi},-, is a sequence of
subspaces of L*(M) satisfying MRI1. Write each ¢, = ¢, (k) for
k=0,1,..., where m; is as in Definition 1.2.2. Then {V; }/_, satisfies MR2 if and
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only if for all k = 0,1, ..., there exists a function c; € L*(Gys1) such that for all
neM, and 1<i,j<d(m) we have ¢, (k) = (c, 0., (k))g, ., where

d(m)

N (k) = mﬂ’”@u )

=1

1.3. Characterization of MR3
Let G be a dense subgroup of M.

Theorem 1.3.1. Let V be a G-invariant subspace of L*(M). Define the set
Q= ﬂ{n € M|f(n) is singular}.

fev

Then the followings are equivalent:
() V =L*(M).
(ii) Q = 0, the empty set.

Remarks. (a) If V = span{L(G)f} where f € L*(M), then the result of this
theorem reduces to the characterization of cyclic vectors. See Theorem 1.1.6.

(b) The theorem can be viewed as a compact group analog of a result of
Wiener on translation invariant subspaces of L*(R), see [5].

Proof. (i) = (ii). Suppose Q # (. Then there exists = € M such that f () is
singular for all fin V. Observe that the operator norm of f (m) is less than or
equal to |f|,1 <|f],, and so the map from L,(M) to End (n) given by f — f ()
is continuous. Thus the set of f such that f (m) is singular is a closed set of
L*(G), and so f(m) is singular for all f e V =L*(M). Take fy =d(n)7,.
where y, is the character of the representation 7. Then a simple computation
shows that fo(n) is the identity operator in the representation space of n. We
thus have contradiction.

(i) = (i). Suppose V # L?*(M). Then there exists a non-zero function
h € L>(M) which is orthogonal to V. By Lemma 1.1.4, C;(h*) =0 for f € V.
Pick 7 € M such that the n-isotypic component h% of h* is not zero. Since Cy
preserves L(n), we see C;(h%) =0 and so f(x) is not invertible for all f € V,
thatiste Q. O

Now let V;,k=0,1,..., be a sequence of finite dimensional subspaces of
L*(M) satisfying MR1. Observe that (L(x)f)"(n) = n(x)f(n) for x e M,
/€ L*(M) and 7 € M, we see that f(n) is singular for all /" € ¥; if and only if
¢, (n) is singular. Thus if we let V = U2 V. then we have



26 A. Lim, C.-B. Zhu | Linear Algebra and its Applications 293 (1999) 15-38

ﬂ{n € M|f(n) singular} = ﬁ{ﬂ? € M|, (n) is singular}.

fev k=0
We therefore have the following corollary.

Corollary 1.3.2 (Characterization of MR3). Assume the notations of Definition
1.2 and {V;},2, satisfies MR1. Then {V;}°, satisfies MR3 if and only if

L= ﬁ{” € M|, (n) is singular} =0,
k=0

the empty set.

Remark. In the classical case of M = T and G, = {e>"/*|1 =0,1,...,2¢ — 1},
then Q = (2 {n € Z|¢,(n) = 0}. The result again is first proved in [2].

2. Existence and construction of orthonormal wavelets

Let {Gi},—, be an MR-group sequence of M, and {V;},-, be a multireso-
lution of L?(M) with respect to {Gy},~,

Definition 2.1. A set of functions

{¢k}

(G
TC =

T
[=]

in L>(M) is called orthonormal wavelets if
oo O
U Utz(Gdd
k=0 I=1
is an orthonormal basis of L?(M).
For k=0,1,..., let W, be the orthogonal complement of ¥} in V,,; with
respect to the standard inner product of L?(M). Since G, preserves the inner

product, W is also a G, module.
By MR3, we have

LAM) =V, @ <k§0 Wk)

Set t = |Gk+1/Gk|,k = 0
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Gy acts on V; and ¥, via the restriction of the left regular representation of
M. From MRI, we see that V; = L*(G;) as G, modules. Furthermore since
Vii1 = L*(Giyy) as Giyp modules, we have

Vi 2 LX(Gy) @ - @ LXGy), and W, 2 L*(G,) @ ---® L*(Gy)

1 t—1

as representations of Gy ([6], p. 28 on induced representations).
Let

T:L}Gy)@---®L*(G,) — Wi

t—1

be a unitary Gy-equivariant isomorphism. Denote 63, =(0,...,0,9,.,0,...,0),
where J, € L*(Gy) is in the /th component and is defined by 6,(x) = 1 forx = ¢
and zero otherwise. Set ¢, = 7(5!), where 1 </<# — 1. Then U ' {L(G\)¢.}
is an orthonormal basis of ;. Similarly from V; 2 L?(G,), we can find ¢3 e
such that {L(Gy)¢3)} is an orthonormal basis of 7.

Thus
o f—1
{L(Go)(¢0)} | (U1L(G 1}
k=0 =1
is an orthonormal basis of L?(M), and so the set
oo -1
o U Uton
k=0 i=1

gives orthonormal wavelets of L?(M).

2.1. Construction of orthonormal wavelets

Let H be a finite group. Let ¢ be a unitary representation of H in a Hilbert
space #. Fix a finite set of vectors uy,...,u, € # and let V =
span{¢(H)u;}, ., Given a set of functions {c¢;},,;,, € L*(H), define

=ﬁ S S e,

<j<m heH

Recall for 1<i,j<m the associated functions f; € L?(H) given by
fij(h) = (ui, ¢(h)u;), h € H. Similarly define g;; € L*(H) by g;(h) = (v;, ¢(h)v;),
h € H. The purpose of this section is to construct explicitly {v;}, _,,, such that
{¢(H)vi}, <<, 1s an orthonormal basis of V, given a basis {¢(H )u;}, ., ,, of V.

Recall also for any f € L2(H), the operator Fourier transform f(n) at = € H
defined by
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|H| > f(h)n(h) € End(m).

heH

For any set of linear operators {a;},.,;., in a vector space W, denote
A = (a), <, <, the corresponding matrix. We may view 4 as an operator in
mW =W & ---@ W by the following formula:

—_————

m

A((wyy ..o ywy)) = (Zal‘/wj, el Za"’fwf> .
=1 =1
DAeHOte F(TE) = (Ji/(n))l<zj<m’ G(TC) = (g‘ij(n))lgﬂjgm’ and C(TC) =
(ci/(n))lgi,jgm-
Lemma 2.1.1. We have G(n) = C(n)F(n)C(n)", namely

gim) = Y @ fu(mé(n),

1<kI<m
for any m € H, and a* denotes the adjoint operator of a € End(n).

Proof. We compute for x € H,

gij(x) = <Ui7¢ j |H|2 Z 1k C/I y)uk7¢(xz)u/>
yzeH
|H|2 Zczk C,/ )fk/(y XZ)
yzeH

A simple computation shows that the Fourier coefficient of the function
fu(y~xz) at wis n(y)fk,(n)n(z)* and hence

gy(m G Z > ) fu(mep @)’

k0 yzeH

=czk( Vi(@en(m)'. O

Proposition 2.1.2. {¢(H)v:}, ., ., is an orthonormal basis of 'V if and only if

Liw 0 -+ 0
N . A 1 0 ILyn - 0
c<n>F<n>c<n>’:@ w7
0 0 - L

for all m € H. Here Ly Is the identity operator in the representation space of .
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Proof. Clearly {¢(H)v:},;,, is orthonormal if and only if g;; = d;;0., where
0;; = 1,0 depending on whether 7 is equal to j, and J.(x) = 1 if x = e and zero
elsewhere. By the uniqueness of operator Fourier transform, it is in turn
equivalent to g;(n) = 0,0.(n) = (1/|H])dla(x for all @ € H, namely

Lim 0 - 0
. 1 0 Ly -~ O
G(n) =

0 0 - L

From Lemma 2.1.1, we see that this is equivalent to

Lip 0 -+ 0
f e, 1 0 Iym --- O
CmFCE)" = A o

0 0 Litn)

forallme H. O

Now suppose that {¢(H)u;}, ;. ,, is linearly independent. From Proposition
1.1.8, we see that F(n) is positive definite as an operator in the representation
spaceof mm=n®--- P 7.

————

m

Theorem 2.1.3. Let H be a finite group, and ¢ be a unitary representation of H in
a Hilbert space # . Let u,...,u, € H such that {p(H)u;}, ., is linearly in-
dependent, and denote V = span{¢(H)u,}, ;. For any n € H, let

P(1) = (py(7)); iy = —=F ()2,

VIH|
where p;(n) € End(n). Let ¢;; € L*(H) be given by

ci(h) = d(mtrpy(mn(h")], heH,

neH

and tr denotes the trace of an operator. Then the vectors

v = ﬁ > cy(h)p(hu;

heH

generate an orthonormal basis {$(H)v;}, ;. ,, for V.
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Proof. By our construction,

Lin) 0 .. 0
. . 1 0 Iypy - 0
P(n)F(n)P(n)" = Vi w .
0 0 s Ay

The Fourier inversion formula [1, p. 131] implies that é;;(r) = p;;(n), for n € H.
Hence we have

Lip 0 -+ 0
U | 0 Iljw --- O
CmF@Em” = ) .
0 0 s Ay

Proposition 2.1.2 then implies the result. [

2.2. Construction of stationary multiresolution and wavelets from cyclic vectors

Recall the notion of cyclic vectors of L?(M) (Section 1.1). We first give a
concrete description of the set of cyclic vectors of L?(M).

Fix 7 € M. Define for each d(n) x d(n) invertible matrix 4 = (a;) the
function

d(n)l/z d(ﬂ)
fn,A = W a;jTj,
ij=1
where
|A] =

Note that |f;4|,. = 1.
Define the following subset of L*(M):

E(M) = {Zanfm; a; #0, (az) € P(M), A € GLd(,Q(C)}.

Notice that the summation ) _ a.f; . converges to some function in L*(M)
by the well-known Riesz-Fischer theorem.

Proposition 2.2.1. 1 is cyclic in L*(M) if and only if f € €(M).
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Proof. Write /' =} _y| ;< a(r 97> Then we have

N I Ay
f(m) e;, e =/ x)mi(x) dx = —%.
(Fm) e e) = | 70 () de = 2%
By Theorem 1.1.6, fis cyclic if and only f (m) is invertible for all @ € M, and

thus it is equivalent to the fact that the matrix (ax,); <, ;< ) is invertible for all
7 € M. The proposition clearly follows after a normalization. [

Theorem 2.2.2. Let f be a cyclic vector of L>(M). Let H be a finite subgroup of
M. Then the representation of H on V = span{L(H)f} is equivalent to the left
regular representation of H on L*(H).

Proof. By Proposition 1.1.1, it suffices to show that the set {L(H )/} is linearly
independent. Suppose that there exists ¢, € C for each # € H such that
> nen il (h)f = 0. Construct an open neighborhood N, about the identity e of
M such that N, NN, = 0 for all distinct g, 4 in H, where N, = {g"'v/; v € N,}.
Define the function ¢ € L*(M) as follows:

(x)_ cr ifXENh,
T =00 if x & Upew N

Let /*(x) = f(x~1), then we have /*(n) = (f(n)) for any = € M, where (f(n))"
denotes the adjoint operator of f () with respect to the inner product in the
representation space of m. Thus f* is also cyclic, and so the operator Cy- is
bijective.

We compute

(Cr-(9)(g) = / £ (ex () dx
=Y | fex e dv= Z/ X' h)e; dx

het 7 Ni heH

- / Sl (xg ") dx =0.

Since Cy- is bijective, we have g = 0. Therefore ¢, =0 for all # € H. Thus
{L(H)f} is linearly independent. [J

Theorem 2.2.3. Let f be a cyclic vector in L>(M). Define V, = span{L(G,)f}
Jor k=0,1,... Then {W}", is a multiresolution of L*(M) with respect to
{Geh.

Proof. The above proposition says that {V;},, satisfies MR1. Clearly since
G. C Gy, we have V;, C V;,;. Thus MR2 is also satisfied. Finally let
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V= UVk Uspan{L Gi)f} = span{L(G)f}.

Thus
V = span{L(G)/} = span{L(M)f} = L*(M)

for f'is a cyclic vector. [

Remark. A multiresolution given in Theorem 2.2.3 is called stationary.

Now let {G;};, be an MR-group sequence of M. Let f'be a cyclic vector of
L?(M) and let it generate a stationary multiresolution as in above, namely

= span{L(m)f;m € G} for k =0,1,... We shall construct an orthonormal
wavelet basis of L?(M) as follows:

For each k, we construct ¢; € V; such that {L(G,)¢}} is an orthonormal
basis for V. See Section 2.1. Recall the space W, the orthogonal complement of
Vi in V;;y. The projection P, of V;,, onto W, is given by

Pq) =4 ) {a,L(&)¢)L()¢.
g€Gy.
Note that the map P; is Gy equivariant, namely L(m)P;(q) = P.(L(m)q) for all
m € Gy. Since
= span{Pi(L(m)f);m € G} = span{Pi(L(m)f);m € Gry1 — Gy},

we see by dimension counting that {P,(L(m)f);m € Gyy1 — Gy} is linearly in-
dependent, and so form a basis of W,. Choose a set of representatives
{x;:i=0,1,...,4 — 1} for the quotient G;,,/G, , where x, = e. Let

Vi = P(L(x)f) = L) = Y (L) S, L@ L)y, 1<i<u — 1.

8€Gy

Since P (L(Gyx;)f) = L(G);., we see that {L(Gi)Y}, ., form a basis of
Wi. We construct ¢, 1 <i<# — 1, such that {L(G\)$;}, ., _, is an ortho-
normal basis of W, (see Section 2.1). Then

(LGt} U { U U{L(Gmi}}

k=0 =1
is an orthonormal basis of L?(M).
3. A non-abelian example

Consider the infinite dihedral group D,, and its subgroups D, defined to be
the following subgroups of GL,(C) with generators:
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Dy = (ry,s |0 €[0,2n)), D, = (Faz/n,5),

where

for o € [0,2x), and

(0 1
s=11 o)
A moment’s reflection shows that D, is isomorphic to the semi- direct product
TxZ,, where T = {r, |« € [0,27)} and Z, = {1,s}, and D, = Z,x Z,. In fact,
D, is isomorphic to O, the full orthogonal group in dimension two. Also as a

set, Dog = {ry, 57, | 2 € [0,27)} and D, = {ram/n, SP2msn | k =0,1,...,n — 1}.
Clearly {Dy },-, is an MR-group sequence of D, (cf. Example b in Section 1).

3.1. Facts about representations of D, and D,, n even

We refer the reader to [6] for the following facts.
(a) Characters of D,,. There are two irreducible representations of D, of
degree one with the characters:

1, X =Ty,
n(x) =1, x € Dy, 112()6):de‘[(x)={_1 s

For each natural number m € N, there is an irreducible representation n” of
degree two with the character

o (x) = {ZCos(moc), X =1y,

10, X = Sr,.

The representation ™ has the following matrix realization:

” el m 0 1
n (}"1):( 0 eimz)’ n (S>:<1 0)

Thus

. 0 e—ima
T (Sr%) = (eim:x 0 )

All irreducible representations of D, are of the form n,#,, {n"}, -
(b) Characters of D,, n even. There are four irreducible representations of D,
of degree one with the characters:



34 A. Lim, C.-B. Zhu | Linear Algebra and its Applications 293 (1999) 15-38

17 X = Pnk/n
Vl(x) = 1; X € Dnv y2<x) = { —1 X = Sanfc/

nx) = (=1 x= {rznk/”’ Pa(x) = { (=1% X =Tamm

k1
SF2nk/ns (=D, x = sramn-

For each j=1,2,...,(n/2) — 1, there is an irreducible representation o’ of
degree two with the character

g (260, ¥ =
>/ 0, X = STk /n-

All irreducible representations of D, for n even are of the form
4 /21
it {O-]}jil .

We now describe how representations of D,, behave under restriction to D,
for n even. We have
M|Du = 715 Ma|Dy = 7,
For any m € N, let 0 <j<n/2 be such that m = £ (mod n). Then

& j=1,...,n/2—1,
Ymlp, = V1 +72 J=0,
Y3+ e J=n/2.

3.2. A multiresolution of L?(D.,) with respect to {Dx},-,

Recall the irreducible representation n” of D., for m € N. We define the
matrix coefficients {njj}f -1 of 1" by

7(x) = (ﬂ’f’l (x) n’lg(x)>

3 (x) 7y (x)

for x € D,,. Thus we have

eim x=r 0 xX=r
Tcrlnl ('x) = ’ " TE’IHZ(x) = limzx "
0, X = Sry, e x = sy
m( ) _ 0, X =Ty, m( ) o eﬂm‘x7 X =7y,
T \X) = 4 Lima _ Tip\X) = _
et x =sr,, 0, X = sr,

For even n, define the functions 13, 1}, (3, (4 € L*(Dx) by
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n/2
) = (7 +

n/ ) _
n/2 n/2 el(n/2)x X =1y,
= (”11 — ) ) ,,/2)

X = §t,.

2
el2r if x =r,, 51y,

n/2
Ty —

(ngéz 2) _ e ﬂ/2> lf X = ra,srC“

{ewm x=r,

— 2o _
/22 x = sr,.

Obviously we have
Lx)(ny) = pi(x)ny,  L(x)(12) = 7202, x € D,.

Here and as before L stands for the left regular representation of D, on
L*(Dy.). A direct computation (on generators of D,) also yields

L(x)(n3) = »3()ns, L)) = 73(0)8G,  x € Dy,
Lx)(m3) = va()ny, L)) = 74()G,  x €Dy

For m € N, denote by L(m) the isotypic component of n in L*(D,.). By Peter—
Weyl Theory, dim L(m) = 4 and it is spanned by {n};

1/1

Theorem 3.2.1. Define

= Cn, © Cny,

2kl
=Cn®CndCn¥ & Cn¥ @ ( @

m

Then {V;},-, is a multiresolution of L*(Dy.) with respect to {Dy };-.

Proof. MR 1: Observe that ¥, contains exactly each irreducible representation o
of D, with multiplicity equal to dim g. Thus Vi = Lz(Dzk) as Dy modules.
Take ¢g =1, + 1, and ¢, =y + 1, + 105 + 1% +Zm:1 % for k=1, then
Vi = span{L(Dy)¢,} by the characterization of cyclic vectors on a finite group.
See Theorem 1.1.6.

MR2: We have by definition

2% 2% 2
Vi=CnmoCn®Cny ©Chy @ 621 L(m) |,

" 2k—1
Visi =Cny ® Cny ® C'h '@ Cy ZA l < @1 L(m))
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Observe that

=1\ __ zk—l 2/c—l 2k71 Zk—l
L(2"7) = span{nm}, ,mj, ,7m5 7y

_ ok ok o2k Dk
- Span{’h 7774 753 154 }

Therefore we have ¥, C V..

MR3: Clearly U2,V contains D-isotypic components of #;,#,, namely
C,,.C,,, and L(m), the n™" isotypic component of L*(D,) for any m € N.
Thus

Lﬁ;:ﬁ@%) O
k=0

To construct a wavelet basis of L?(D,.), we write Vi, = Vi & W, where W, is
the Dy-invariant subspace defined by

Wy = Cn3 @ Cu,

+ + c 21
W= oo acl ol @ ( % L(m)), K>

m=2k"141

We then have L*(Dy) = Vo @ (D2 W), and Wy = L?(Dy) as Dy modules (cf.
Section 2.1). Notice that

2k+1 2k+1

Ny Dy =7y, 1y |Dx =7,

and Cik, Cik transform according to the characters vy, v, of D. Notice also that

2/»'71 2/(—171 ‘ 2/:—171
@& L(m)= L(2F —j) = L(j)
m=26_111 j=1 =1
as D, modules.
Let
o =1 + 1,
Yo =13+ 103,
k1 kel i k 21
+ k+ <
Ve=m +m GG Dt k=1
m=2k=141

Then ¥, = span{L(Dy)¢,} and W, = span{L(Dy)y,} for all k > 0, and so

{L(D0)¢0} U { G{L(Dzk)lpk}}
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is a wavelet basis of L?*(D,) with respect to the MR-group sequence
{Dzk};iw

4. Concluding remarks

(a) By using the classification of finite subgroups of SOs, one can show that
SO; does not possess any MR-group sequence. We outline such an argument.
As a finite subgroup of SO;, each G, must be isomorphic to one of the fol-
lowing subgroups: (1) Z,, (2) D,, (3) 44, (4) 4s, (5) Sy (see [1], p.18). The di-
mensions of irreducible representations of all the groups listed above have a
uniform bound. If {G;},7, is an MR-group sequence of SO;, then any irre-
ducible representation of SO; is irreducible when restricted to Gy for k large
enough. Thus the dimensions of irreducible representations of G, for all k£ will
have to be unbounded, which is a contradiction.

(b) In view of (a), our theory of multiresolution on compact groups is
probably more suited for compact groups which are semi-direct products than
for compact semi-simple groups such as SO;. Our example in §3 illustrates
this point and as well as the usefulness of the notion of multiresolution for
the infinite dihedral group, which is the semi-direct product of the torus with
7.

(c¢) Finally we would like to point out that most of our results actually do
not depend on the hypothesis that the MR-group sequence { Gy}~ exists in M.
More specifically, with the exception of Section 1.3. Characterization of MR3,
our results are stated in the general setup of either a compact group K, or a
compact group M and a finite subgroup H. See for example Theorems 1.1.6,
2.1.3, and 2.2.2. They are thus of independent interest.
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