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Abstract

In this paper, we are concerned with orbital integrals on a dadseal reductive Lie groups with
non-compact Iwasaw& -component. The clasS contains all connected semisimple Lie groups
with infinite center. We establish that any given orbital integral over general orbits with compactly
supported continuous functions for a grotpn C is convergent. Moreover, it is essentially the limit
of corresponding orbital integrals for its quotient groups in Harish-Chandra’s class. Thus the study of
orbital integrals for groups in clagsreduces to those of Harish-Chandra’s class. The abstract theory
for this limiting technique is developed in therggal context of locally compact groups and linear
functionals arising from orbital integrals. We point out that the abstract theory can be modified easily
to include weighted orbital integrals as well. As an application of this limiting technique, we deduce
the explicit Plancherel formula for any group in cldss
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a real reductive Lie group. L&t be a maximal compact subgroup Gfand
0 be the Cartan involution of; corresponding tX . Let B be a real symmetric bilinear
form on the Lie algebra of5. Suppose(G, K, 6, B) satisfy all assumptions so thét
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is in Harish-Chandra’s class. Fix a Haar measditeon G. Let C.(G) be the space of
compactly supported continuous functions @nLet L1(G) be the space of absolutely
integrable functions o6;. Fix an elemeny € G and letG” be the centralizer of in G.
Fix a Haar measuréz on G”. Let x denote the equivalence classxoin G/G”. Letdx
denote the unique measure 6iG” such that

/f(x)dx: / F((x)dx,
G G/GY
whereF (x) = [;, f(xz)dzand f € C.(G). For f € C.(G), we set

AV(f) = / fxyx~bax.
G/GY

Then AY is a distribution onG. We calledA” an orbital integral. Note that if is the
identity element, them” is §, the Diracs distribution.

Let G denote the set of equivalence classes of irreducible unitary representati®ns of
Let 7 € G and f € LY(G). We define the Fourier transform of at = by =(f) =
fG f(x)m(x)dx. LetC2°(G) be the space of compactly supported smooth functiors.on
Thenx (f) is of trace class and we s¢(x) = tr((f)) for eachf € C(G) andz € G.

Let V be the set of function§f: f € C2(G)} onG. Let A be an invariant distribution

on G. Then the Fourier inversion of is a linear functionalF(A) on V such that, for any
feCx(G), ]-'(A)(f) = A(f). A central problem in Harmonic analysis is to compute an
explicit formula for F(A). The corresponding problem for orbital integrals is studied by
many; Arthur [1], Barbasch [3], Bouaziz [4], Harish-Chandra [12], Herb [6], and Sally and
Warner [5].

LetC denote the class of real reductive Lie gratiwith datum(G, K, 6, B) satisfying
all assumptions in Harish-Chandra’s class except has non-compact but contains a
finitely generated central discrete subgrduguch thatk /I" is compact. In this paper, we
are interested in orbital integrals of groups in cl&s§he groups in clas§ includes all
universal covering of real reductive linear algebraic groups. In particular, all real connected
semisimple Lie groups with infinite center. We show that the orbital integral of a group
in classC is convergent and, in essence, the limit of corresponding orbital integrals of
groups in Harish-Chandra’s class. As such the study of orbital integrals of groups in class
C reduces to those of Harish-Chandra’s class. Specifically, one can deduce the Fourier
inversion formula for orbital integral formula for groups in clas$érom those for groups
in Harish-Chandra’s class by the limiting technique described here. We shall see that the
abstract theory for the limiting technique is developed in the general context of locally
compact groups and linear functionals arising from orbital integrals. This suggests possible
applications of such method to other classes of groups. We note that the content of this
paper is an extension of results obtained in the author’s doctoral dissertation [16].

We outline the contents of this paper now. In Section 2 we give the abstract theory for
the limiting technique mentioned above. We shall see that the development of the abstract
theory is very simple and can be adjusted to study weighted orbital integrals in groups
of classC. As an application to the limiting technique, we compute in Section 3 the ex-
plicit Plancherel formla of a group in clasg€. Of course, our method relies heavily on
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known results of Harish-Chandra for his class of reductive groups (see [9-11]). Although
the explicit Plancherel formula for groups in clashas been computed by Herb and Wolf
[13] and, independently, by Duflo and Vergne [15], it still interesting to note yet another
example of the far-reaching consequences of Harish-Chandra’s work. Moreover, this com-
putation is sufficient to illustrate how our theory can be applied to deduce the inversion
formula for orbital integral for groups in clags

2. Abstract theory

Throughout this section is a locally compact, separable unimodular group unless
otherwise stated. We keep all notas of Section 1. Fix an elememte G. Assume that
G” is unimodular. Supposg contains a sequence of central discrete subgrélips € N,
such that

(1) r;criforall jeN.

(2) For each compact s&t c G there existsN € N, dependent only orC, so that
CNnrj=¢forall j > NorCnNIrI;={e}forall j > N, wheree denotes the identity
inG.

SetG; = G/T;. Let x; denote the equivalence classxofin G ;. Define the surjective
linear map®; : C.(G) — C.(G;) by, for eachf € C.(G),

(X)) =Y fOxy).
yerl;

Letdx; be the Haar measure @h; such that

/f(x)dx:/CDj(f)(xj)dxj.
G G;
Equip C:(G) and C.(G;) with the usual convolution and the involution defined by
f*(x) = f(x~1) for any function f on G. For eachr € é,-, we may identifyz with

7 € G wherest (x) = 7(xj) foranyx € G. The following are important but easy-to-verify
properties ofp;.

Proposition 2.1. Let f, h € C.(G), 7 € G;.
(1) @; preserves convolution and involution, thatds (f = h) = @;(f) * ®;(h) and
D;(f*)=P;(N)*.
() 7(®;(f)=7(f).
Define the orbital integralt” ( /) with f € C.(G) by

AV(f) = / (xyx~b) di.
G/GY
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Note thatG/GY = Gj/Gj'j. Thus we may define the orbital integrals, for eathe
Cc(Gj),

AYi(f) = / f(xjijjfl)dfc.
G/GY

At this point, we do not know the convergence of any of the above orbital integrals.
However, we shall show that”(f) is convergent whenevedYi(®;(f)) are conver-
gent for everyj € N. For this purpose, we shall assume thgt (1) is convergent for

all f eC.(Gj). ThusA?/ is alinear functional oiC. (G ;). Moreover,A*/ lifts to a linear
functionalA; on C.(G) defined by, for eaclf € C.(G), Aj (f) =AY (D, (f)).

Lemma 2.2. Fix f € C.(G). Then there exist® € N, dependent orf andy, such that

(1) if y e supp f) theny; Nsupp f) = {y} forall j > N;
(2) if y ¢ supp f) theny; Nsupp(f) =0V forall j > N.

Consequentlyim j oo @; (/) (yj) = f ().

Proof. TakeC = y~1-supp f). ThenC is a compact subset 6f. The result follows from
the properties ofI'j} jen. O

Theorem 2.3. For each fixedf € C.(G) we haveA”(f) =lim;_ Aif(f). Moreover,
AY is alinear functional orC.(G).

Proof. Set F(x) = f(xyx~1) and Fi(x) = <1>j(f)(xjijj‘1) for eachx € G. As A?
are linear functionalsf; LY(G/G?) for all j € N. By Lemma 2.2, for each € G,
lim;_ o Fj(X) = F(x). It suffices to consider positive valuefl as we may writef =
Re(f)T —Re(f)~ +ilm(f)T —ilm(f)~ where Réf) and Im(f) denote the real and
imaginary parts off respectively and = +/—1. Therefore we have; (x) > F; (&) > 0 for
all j € N. Thus by Lebesgue’s dominated convergence theorem L1(G/GY). More-
over, we have

,Iim Aj:(f):ilim /Fj()é)d)%z / F(xX)dx = AV (f). O
/ ! G/GY G/GY

2.1. Real reductive group case

Suppose tha@ is a real reductive Lie group in clagswith datum(G, K, 0, B). Let
I be the finitely generated central discrete subgroui isuch thatk /I" is compact.
Without loss of generality, we may assume tlais torsion free. Let- denote the free
rank of I and letys, ..., y- be the generators df. Let I"; denote the central discrete
subgroup generated l:M ...,/ for j € N. Then the groupgG and its subgroup$’;,
j € N, satisfy the assumptions at the beginning of Section 2. Observekthat K /T’;
is compact becausg/I; is finite andK /I" = (K /I';)/(I"/T;) is compact. Furthermore,
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I'; is a central discrete subgroup@fthusG; = G/I'; shares the same Lie algebraGs
Consequently, the datu( ;, K ;, 6, B) satisfies all assumptions in Harish-Chandra’s class
(see[7, Chapter VII, Section 2]). Thus,; is in Harish-Chandra’s class ait} is maximal
compact inG; (see [7, Proposition 7.19]). Moreover, for aji¥ N, the integralsA’ are
convergent for aly € G and are distributions (see [17]). Consequently,= lim ;_, » A;f

is a distribution. We may then expressed Theorem 2.3 in terms of the Fourier transform of
AY andA?. We state it here as a corollary of Theorem 2.3.

Corollary 2.4. For f € C2(G), i .00 F(AD(f) = F(AM) ().

We conclude this section by indicating that the above theory can also be applied to the
study of weighted orbital integrals (see [2]). Weighted orbital integrals are generalization of
orbital integrals discussed above. Moreover, they are in general non-invariant distributions.
We shall keep the above notations. The gréujs in classC.

Let v be a non-negative measurable function@nG”. Define the weighted orbital
integralL” on C.(G) by, for f € C.(G),

L (f)= / f(xyxil)v()'c)dfc.

G/GY

As above, we may also define the weighted orbital integrals 4@ ;) by, f € C.(G)),

LY (f)= / f(x.,'y.,'xj_l)v()'c) dx.
G/GY

We assume that”/ (/) is convergent forf € C.(G ). SetL;f(f) =LY (P;(f)) for f e

C.(G). ThenL’ is a linear functional oi€.(G). By the same arguments as in the proof of
Theorem 2.3, we obtain the following theorem.

Theorem 2.5. For each fixedf € C.(G) we haveL”(f) =1lim;_, Lif(f). Moreover,
LY is a linear functional orC.(G).

3. Plancherel formulafor groupsin classC

In this section, we shall apply the limiting technique developed in Section 2 to compute
the Plancherel formula for any group in cla&sWe begin by setting up notations required
for computations later and recall a simpleension of the Peter—Weyl theorem. We will
also adopt all notations of Section 2.1.

Let CanG) be a complete set @f-stable Cartan subgroup 6f. Let g denote the Lie
algebra ofG. Let £ denote the Lie algebra of . Let g = £ @ p be the Cartan decompo-
sition of g. Let H € CanG) and leth denote its Lie algebra. Lailr = exp(h N p) where
exp: g — G is the usual exponential map. LAy = K N H. ThenH = H; - Hg. Note that
CanG;)={H/I';: H € CanG)).
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3.1. Reduced dual and properties of tempered characters

The reduced dual (or tempered dual) @fis obtained as follows. Let/ € CanG).
Write H = H; - Hg. For simplicity, sel’ = H; andA = Hg. LetT* andA* denote the set
of irreducible unitary characters @f and A, respectively. LetP be a parabolic subgroup
containingA. Write P = M AN whereM is the Levi subgroup. Thefi is a Cartan sub-
group of M. Moreover,T'/I" is compact. Thu3/ has relative discrete series (see [14]) and
they are parametrized #%*', the set of regular elements Bf. Fix x € T*', letx, denote
the relative discrete series representationotorresponding tgc. Let (V, (,)) be the
Hilbert space on whichr, acts. Fixv € A*. Define the irreducible unitary representation
T, of P,forme M,ac A,andn € N, byn;(man) =, (m)v(a). Let’H be the space of
all V-valued measurable functions éhsatisfying, forf € H,

(1) f(px)=my(p)(f(x)) forall pe P andx €G.
@) [y r{f (), £))dk < oo.

Herek — k is the canonical projection & ontoK /I" anddk is a Haar measure oki/I".
EndowH with the inner productf, g) = fK/F<f(k), g(k)) dk for any f, g € H. ThenH

is a Hilbert space. Define thaitary representatiom, , of G in H by (7, ., (f)(y))(x) =
f(xy)foranyx,y € G andf € ‘H. We shall denotér, ., H) by Indf.?(n;). Note thatr, ,
are tempered for alf € 7* andv € A*. Moreover, they are irreducible wheneves A*/,
the set of regular elements i*. For singular element € A*, Indf.?(n)‘;) is reducible
and decomposes into a direct sum of irreducible representatioGs ©hese irreducible
representations are called limits of relative discrete series. The reduced dual consists of
the collection of all equivalent classes of irreducible representations atftained from
the family{lndf.?(n;): x € T*, v e A*}. The character® (x, v) of the representations
Ind$ () are eigendistributions off.

We further note that each;-invariant characters iff * induces a irreducible unitary
character orf’/T;. In fact, the set off’;-invariant characters iff * corresponds exactly
to (T/Ij)*. Of course, eachj-invariant x € T*' gives ar’j-invariant representation
Ind$ () foranyv € A%, and thus induces a tempered unitary representatia ofhe
collection of all equivalence classes of irreducible representations obtained frar all
invariant Incﬁ(n;) gives the reduced dual @, .

Next, we fix a natural measure @it which will be used later in our computation of
Fourier inversion formula. We recall that= Z" thusI™* = T". HereT is the circle group.
For each; € I'*, we setTg* to be the collection of aly € T* such thaty (y1) = ¢(y) x (¢)
forall y € I andr € T. Then by of [14, Section 2.4]E£* is discrete and we may write*
as the disjoint union of *, ¢ € I'*. Of course, we may also writd’/I";)* as the disjoint
union of 7%, ¢ € (I'/I'j)*. Letd¢ be the Haar measure di* normalized such that the
total volume of"* is one. Letd y be the measure ofi* such that, for any € C.(T*),

[ Foodx=[ ¥ Fooe.

T* r* X ET{*
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Extend® (x, v)(f) to a function onT* x A* by setting® (x, v)(f) = 0 whenevery
is singular inT*. By [8, Lemma 68 of Section 29], we see that, for any polynorpiah
T* x A*, the function|p(x, v)®©(x, v)(f)| is bounded. Letlv be a Lebesgue measure on
A*. Note that the set of singular points T x A* has zero measure with respect to the
measurel/ xdv onT* x A*. From above™ = J, . - T/, thus we may define the function
¥ onl* by

Wi Y /p(x,v)@(x,v)(f)dv.
XETS A

Then is continuous (see character formulaagivin [14, Proposition 4.3.10]) except on
a set of measure zero. The topology B is the usual topology on a product of circle
groups.

3.2. Plancherel formula

Normalize the measuréx on G so thatdx; is the standard Haar measure Gn (see
[11, Section 7]). We callix on G the I'-standard Haar measure. Wigh: fixed, we ob-
tained the induced measurés; on G ; defined in Section 2. Letk; denote the measure
of K;. Note thatK ; is a j"-fold cover of K1. Moreover, the volume oK} is 1 under the
standard Haar measure f61. Consequentlyf,(j dkj = j" anddx; is j" times the stan-
dard Haar measure @i;. Fix f € C2°(G). Then the Plancherel formula 6f; associated
to the Haar measuuéx ;, according to Harish-Chandra in [11], is given by

C(Gi/A
oiNep=Y ZYA g

]r
T-AeCarnG) xe(T/Tj)*

X/M(A:xZV)Tr(ﬂx,v(qjj(f)))d”'

A*

Here C(G;/A) = c(G.,'/A)*Zy(G.,'/A)*l[m(Gj/A)]*l wherec(G;/A) (see [11, Sec-
tion 11]), ¥ (G;/A) (see [11, Lemma 2.6]) anbho(G;/A)] (see [11, p. 168]) are con-
stants. From the definition of these constants, we see that they are independgent of
becauseG; is a quotient ofG by a central discrete subgroup containedAn We

set C(G/A) = C(G;/A). The positive numbet(y) is the formal degree of the dis-
crete series representatiary whenevery is regular and zero otherwise. The function
w(A: x :v)isthe density function for the Planateémeasure. By Proposition 2.1, we have
Tr(my v (@ () = O(x, v)(f). We shall identify(T/I";)* with the set ofI";-invariant
characters irf"*. Thus we may rewrite the above formula as

C(G/A
oen= Y SV s
T-AeCanG) J ZE(F/FJ')*XET;

x /M(A:x:v)@(x,v)(fwv.

A*
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From the formula ofi(x) (see [11, Section 23]), we see that> d(x) is a continuous
function onT*. The functionw(A : x : v) is part of the density function for the Plancherel
measure. From the computation in [11], one can seetliat: x : v) defines a positive
valued continuous function ofi* x A*. In fact, as pointed out in [11j4(A: x :v) is a
product of polynomials and hyperbolic type functions that appe&Lii2, R) computa-
tions. Thusu(A : x : v) naturally extends to a continuous function on the sgte A*
which we would still denote by.(A : x : v). We note that/(x)u(A : x : v) has growth
bounded by some polynomial @i x A*. Thus, as explained in Section 3.1, the following
map is continuous ofi* except on a set of measure zero:

= d(x)/u(A:x:v)@(x,v)(f)dv.

X ET{* A*

Letting j tend to infinity, we get

flo= Y C(G/A)f Zd(x)fu(A:x:v)@(x,v)(f)dvdg“-
A*

T-AeCanG) cer* XET;

Thus, by the uniqueness of the Plancherel measure and Theorem 2.3, the Plancherel for-
mula of G associated to the Haar measureis given by

fle)= Z C(G/A)/d(x)/u(A:x:v)@(x,v)(f)dvdx.
T~AeCar(G) T* A*
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