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Abstract

In this paper, we are concerned with orbital integrals on a classC of real reductive Lie groups with
non-compact IwasawaK-component. The classC contains all connected semisimple Lie grou
with infinite center. We establish that any given orbital integral over general orbits with comp
supported continuous functions for a groupG in C is convergent. Moreover, it is essentially the lim
of corresponding orbital integrals for its quotient groups in Harish-Chandra’s class. Thus the s
orbital integrals for groups in classC reduces to those of Harish-Chandra’s class. The abstract th
for this limiting technique is developed in the general context of locally compact groups and line
functionals arising from orbital integrals. We point out that the abstract theory can be modified
to include weighted orbital integrals as well. As an application of this limiting technique, we de
the explicit Plancherel formula for any group in classC.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a real reductive Lie group. LetK be a maximal compact subgroup ofG and
θ be the Cartan involution ofG corresponding toK. Let B be a real symmetric bilinea
form on the Lie algebra ofG. Suppose(G,K, θ,B) satisfy all assumptions so thatG
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is in Harish-Chandra’s class. Fix a Haar measuredx on G. Let Cc(G) be the space o
compactly supported continuous functions onG. Let L1(G) be the space of absolute
integrable functions onG. Fix an elementy ∈ G and letGy be the centralizer ofy in G.
Fix a Haar measuredz on Gy . Let ẋ denote the equivalence class ofx in G/Gy . Let dẋ

denote the unique measure onG/Gy such that∫

G

f (x) dx =
∫

G/Gy

F (ẋ) dẋ,

whereF(ẋ) = ∫
Gy f (xz) dz andf ∈ Cc(G). Forf ∈ Cc(G), we set

Λy(f ) =
∫

G/Gy

f
(
xyx−1)dẋ.

ThenΛy is a distribution onG. We calledΛy an orbital integral. Note that ify is the
identity element, thenΛy is δ, the Dirac-δ distribution.

Let Ĝ denote the set of equivalence classes of irreducible unitary representationG.
Let π ∈ Ĝ and f ∈ L1(G). We define the Fourier transform off at π by π(f ) =∫
G f (x)π(x) dx. LetC∞

c (G) be the space of compactly supported smooth functions oG.

Thenπ(f ) is of trace class and we setf̂ (π) = tr(π(f )) for eachf ∈ C∞
c (G) andπ ∈ Ĝ.

Let V be the set of functions{f̂ : f ∈ C∞
c (G)} on Ĝ. Let Λ be an invariant distribution

onG. Then the Fourier inversion ofΛ is a linear functionalF(Λ) onV such that, for any
f ∈ C∞

c (G), F(Λ)(f̂ ) = Λ(f ). A central problem in Harmonic analysis is to compute
explicit formula forF(Λ). The corresponding problem for orbital integrals is studied
many; Arthur [1], Barbasch [3], Bouaziz [4], Harish-Chandra [12], Herb [6], and Sally
Warner [5].

Let C denote the class of real reductive Lie groupG with datum(G,K, θ,B) satisfying
all assumptions in Harish-Chandra’s class except thatK is non-compact but contains
finitely generated central discrete subgroupΓ such thatK/Γ is compact. In this paper, w
are interested in orbital integrals of groups in classC. The groups in classC includes all
universal covering of real reductive linear algebraic groups. In particular, all real conn
semisimple Lie groups with infinite center. We show that the orbital integral of a g
in classC is convergent and, in essence, the limit of corresponding orbital integra
groups in Harish-Chandra’s class. As such the study of orbital integrals of groups in
C reduces to those of Harish-Chandra’s class. Specifically, one can deduce the
inversion formula for orbital integral formula for groups in classC from those for groups
in Harish-Chandra’s class by the limiting technique described here. We shall see t
abstract theory for the limiting technique is developed in the general context of lo
compact groups and linear functionals arising from orbital integrals. This suggests po
applications of such method to other classes of groups. We note that the content
paper is an extension of results obtained in the author’s doctoral dissertation [16].

We outline the contents of this paper now. In Section 2 we give the abstract theo
the limiting technique mentioned above. We shall see that the development of the a
theory is very simple and can be adjusted to study weighted orbital integrals in g
of classC. As an application to the limiting technique, we compute in Section 3 the
plicit Plancherel formula of a group in classC. Of course, our method relies heavily o



596 C.K. Arthur Lim / J. Math. Anal. Appl. 296 (2004) 594–602

ough
olf
ther

s com-
rsion

less
t

by

fy
known results of Harish-Chandra for his class of reductive groups (see [9–11]). Alth
the explicit Plancherel formula for groups in classC has been computed by Herb and W
[13] and, independently, by Duflo and Vergne [15], it still interesting to note yet ano
example of the far-reaching consequences of Harish-Chandra’s work. Moreover, thi
putation is sufficient to illustrate how our theory can be applied to deduce the inve
formula for orbital integral for groups in classC.

2. Abstract theory

Throughout this section,G is a locally compact, separable unimodular group un
otherwise stated. We keep all notations of Section 1. Fix an elementy ∈ G. Assume tha
Gy is unimodular. SupposeG contains a sequence of central discrete subgroupsΓj , j ∈ N,
such that

(1) Γj ⊂ Γ1 for all j ∈ N.
(2) For each compact setC ⊂ G there existsN ∈ N, dependent only onC, so that

C ∩ Γj = ∅ for all j � N or C ∩ Γj = {e} for all j � N , wheree denotes the identity
in G.

Set Gj = G/Γj . Let xj denote the equivalence class ofx in Gj . Define the surjective
linear mapΦj : Cc(G) → Cc(Gj ) by, for eachf ∈ Cc(G),

Φj (f )(xj ) =
∑
γ∈Γj

f (xγ ).

Let dxj be the Haar measure onGj such that∫

G

f (x) dx =
∫

Gj

Φj (f )(xj ) dxj .

Equip Cc(G) and Cc(Gj ) with the usual convolution and the involution defined

f ∗(x) = f (x−1) for any functionf on G. For eachπ ∈ Ĝj , we may identifyπ with
π̃ ∈ Ĝ whereπ̃(x) = π(xj ) for anyx ∈ G. The following are important but easy-to-veri
properties ofΦj .

Proposition 2.1. Letf,h ∈ Cc(G), π ∈ Ĝj .

(1) Φj preserves convolution and involution, that isΦj (f ∗ h) = Φj (f ) ∗ Φj (h) and
Φj (f

∗) = Φj(f )∗.
(2) π(Φj (f )) = π̃(f ).

Define the orbital integralΛy(f ) with f ∈ Cc(G) by

Λy(f ) =
∫

y

(
xyx−1)dẋ.
G/G
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Note thatG/Gy = Gj/G
yj

j . Thus we may define the orbital integrals, for eachf ∈
Cc(Gj ),

Λyj (f ) =
∫

G/Gy

f
(
xjyjx

−1
j

)
dẋ.

At this point, we do not know the convergence of any of the above orbital integ
However, we shall show thatΛy(f ) is convergent wheneverΛyj (Φj (f )) are conver-
gent for everyj ∈ N. For this purpose, we shall assume thatΛyj (f ) is convergent for
all f ∈ Cc(Gj ). ThusΛyj is a linear functional onCc(Gj ). Moreover,Λyj lifts to a linear
functionalΛy

j onCc(G) defined by, for eachf ∈ Cc(G), Λ
y
j (f ) = Λyj (Φj (f )).

Lemma 2.2. Fix f ∈ Cc(G). Then there existsN ∈ N, dependent onf andy, such that

(1) if y ∈ supp(f ) thenyj ∩ supp(f ) = {y} for all j � N ;
(2) if y /∈ supp(f ) thenyj ∩ supp(f ) = ∅ for all j � N .

Consequently,limj→∞ Φj (f )(yj ) = f (y).

Proof. TakeC = y−1 ·supp(f ). ThenC is a compact subset ofG. The result follows from
the properties of{Γj }j∈N. �
Theorem 2.3. For each fixedf ∈ Cc(G) we haveΛy(f ) = limj→∞ Λ

y
j (f ). Moreover,

Λy is a linear functional onCc(G).

Proof. Set F(ẋ) = f (xyx−1) and Fj (ẋ) = Φj(f )(xjyjx
−1
j ) for eachx ∈ G. As Λ

y
j

are linear functionals,Fj ∈ L1(G/Gy) for all j ∈ N. By Lemma 2.2, for eachx ∈ G,
limj→∞ Fj (ẋ) = F(ẋ). It suffices to consider positive valuedf as we may writef =
Re(f )+ − Re(f )− + i Im(f )+ − i Im(f )− where Re(f ) and Im(f ) denote the real an
imaginary parts off respectively andi = √−1. Therefore we haveF1(ẋ) � Fj (ẋ) � 0 for
all j ∈ N. Thus by Lebesgue’s dominated convergence theorem,F ∈ L1(G/Gy). More-
over, we have

lim
j→∞ Λ

y
j (f ) = lim

j→∞

∫

G/Gy

Fj (ẋ) dẋ =
∫

G/Gy

F (ẋ)dẋ = Λy(f ). �

2.1. Real reductive group case

Suppose thatG is a real reductive Lie group in classC with datum(G,K, θ,B). Let
Γ be the finitely generated central discrete subgroup inK such thatK/Γ is compact.
Without loss of generality, we may assume thatΓ is torsion free. Letr denote the free
rank of Γ and letγ1, . . . , γr be the generators ofΓ . Let Γj denote the central discre

subgroup generated byγ j

1 , . . . , γ
j
r for j ∈ N. Then the groupG and its subgroupsΓj ,

j ∈ N, satisfy the assumptions at the beginning of Section 2. Observe thatKj = K/Γj

is compact becauseΓ/Γj is finite andK/Γ = (K/Γj )/(Γ /Γj ) is compact. Furthermore
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Γj is a central discrete subgroup ofG thusGj = G/Γj shares the same Lie algebra asG.
Consequently, the datum(Gj ,Kj , θ,B) satisfies all assumptions in Harish-Chandra’s c
(see [7, Chapter VII, Section 2 ]). Thus,Gj is in Harish-Chandra’s class andKj is maximal
compact inGj (see [7, Proposition 7.19]). Moreover, for anyj ∈ N, the integralsΛy

j are
convergent for ally ∈ G and are distributions (see [17]). Consequently,Λy = limj→∞ Λ

y

j

is a distribution. We may then expressed Theorem 2.3 in terms of the Fourier transf
Λy andΛ

y
j . We state it here as a corollary of Theorem 2.3.

Corollary 2.4. For f ∈ C∞
c (G), limj→∞F(Λ

y

j )(f̂ ) =F(Λy)(f̂ ).

We conclude this section by indicating that the above theory can also be applied
study of weighted orbital integrals (see [2]). Weighted orbital integrals are generalizat
orbital integrals discussed above. Moreover, they are in general non-invariant distrib
We shall keep the above notations. The groupG is in classC.

Let v be a non-negative measurable function onG/Gy . Define the weighted orbita
integralLy onCc(G) by, for f ∈ Cc(G),

Ly(f ) =
∫

G/Gy

f
(
xyx−1)v(ẋ) dẋ.

As above, we may also define the weighted orbital integrals onCc(Gj ) by, f ∈ Cc(Gj ),

Lyj (f ) =
∫

G/Gy

f
(
xjyjx

−1
j

)
v(ẋ) dẋ.

We assume thatLyj (f ) is convergent forf ∈ Cc(Gj ). SetLy

j (f ) = Lyj (Φj (f )) for f ∈
Cc(G). ThenL

y

j is a linear functional onCc(G). By the same arguments as in the proo
Theorem 2.3, we obtain the following theorem.

Theorem 2.5. For each fixedf ∈ Cc(G) we haveLy(f ) = limj→∞ L
y
j (f ). Moreover,

Ly is a linear functional onCc(G).

3. Plancherel formula for groups in class C

In this section, we shall apply the limiting technique developed in Section 2 to com
the Plancherel formula for any group in classC. We begin by setting up notations requir
for computations later and recall a simple extension of the Peter–Weyl theorem. We w
also adopt all notations of Section 2.1.

Let Car(G) be a complete set ofθ -stable Cartan subgroup ofG. Let g denote the Lie
algebra ofG. Let k denote the Lie algebra ofK. Let g = k ⊕ p be the Cartan decompo
sition of g. Let H ∈ Car(G) and leth denote its Lie algebra. LetHR = exp(h ∩ p) where
exp: g → G is the usual exponential map. LetHI = K ∩H . ThenH = HI ·HR . Note that
Car(Gj ) = {H/Γj : H ∈ Car(G)}.
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3.1. Reduced dual and properties of tempered characters

The reduced dual (or tempered dual) ofG is obtained as follows. LetH ∈ Car(G).
Write H = HI ·HR. For simplicity, setT = HI andA = HR . LetT ∗ andA∗ denote the se
of irreducible unitary characters ofT andA, respectively. LetP be a parabolic subgrou
containingA. Write P = MAN whereM is the Levi subgroup. ThenT is a Cartan sub
group ofM. Moreover,T/Γ is compact. ThusM has relative discrete series (see [14]) a
they are parametrized byT ∗′, the set of regular elements ofT ∗. Fix χ ∈ T ∗′, let πχ denote
the relative discrete series representation ofM corresponding toχ . Let (V , 〈 , 〉) be the
Hilbert space on whichπχ acts. Fixν ∈ A∗. Define the irreducible unitary representati
πν

χ of P , for m ∈ M, a ∈ A, andn ∈ N , by πν
χ(man) = πχ(m)ν(a). LetH be the space o

all V -valued measurable functions onG satisfying, forf ∈ H,

(1) f (px) = πν
χ(p)(f (x)) for all p ∈ P andx ∈ G.

(2)
∫
K/Γ

〈f (k), f (k)〉dk̄ < ∞.

Herek 
→ k̄ is the canonical projection ofK ontoK/Γ anddk̄ is a Haar measure onK/Γ .
EndowH with the inner product(f, g) = ∫

K/Γ
〈f (k), g(k)〉dk̄ for anyf,g ∈ H. ThenH

is a Hilbert space. Define theunitary representationπχ,ν of G in H by (πχ,ν(f )(y))(x) =
f (xy) for anyx, y ∈ G andf ∈ H. We shall denote(πχ,ν,H) by IndG

P (πν
χ). Note thatπχ,ν

are tempered for allχ ∈ T ∗′ andν ∈ A∗. Moreover, they are irreducible wheneverν ∈ A∗′,
the set of regular elements inA∗. For singular elementν ∈ A∗, IndG

P (πν
χ) is reducible

and decomposes into a direct sum of irreducible representations ofG. These irreducible
representations are called limits of relative discrete series. The reduced dual con
the collection of all equivalent classes of irreducible representations ofG obtained from
the family {IndG

P (πν
χ): χ ∈ T ∗′, ν ∈ A∗}. The charactersΘ(χ,ν) of the representation

IndG
P (πν

χ) are eigendistributions onG.
We further note that eachΓj -invariant characters inT ∗ induces a irreducible unitar

character onT/Γj . In fact, the set ofΓj -invariant characters inT ∗ corresponds exactl
to (T /Γj )

∗. Of course, eachΓj -invariant χ ∈ T ∗′ gives aΓj -invariant representatio
IndG

P (πν
χ) for anyν ∈ A∗, and thus induces a tempered unitary representation onGj . The

collection of all equivalence classes of irreducible representations obtained from aΓj -
invariant IndGP (πν

χ) gives the reduced dual ofGj .
Next, we fix a natural measure onT ∗ which will be used later in our computation

Fourier inversion formula. We recall thatΓ ∼= Z
r thusΓ ∗ ∼= T

r . HereT is the circle group
For eachζ ∈ Γ ∗, we setT ∗

ζ to be the collection of allχ ∈ T ∗ such thatχ(γ t) = ζ(γ )χ(t)

for all γ ∈ Γ andt ∈ T . Then by of [14, Section 2.4],T ∗
ζ is discrete and we may writeT ∗

as the disjoint union ofT ∗
ζ , ζ ∈ Γ ∗. Of course, we may also write(T /Γj )

∗ as the disjoint
union ofT ∗

ζ , ζ ∈ (Γ /Γj)
∗. Let dζ be the Haar measure onΓ ∗ normalized such that th

total volume ofΓ ∗ is one. Letdχ be the measure onT ∗ such that, for anyF ∈ Cc(T
∗),

∫
∗

F(χ) dχ =
∫
∗

∑
χ∈T ∗

F(χ) dζ.
T Γ ζ
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ExtendΘ(χ,ν)(f ) to a function onT ∗ × A∗ by settingΘ(χ,ν)(f ) = 0 wheneverχ
is singular inT ∗. By [8, Lemma 68 of Section 29], we see that, for any polynomialp on
T ∗ × A∗, the function|p(χ, ν)Θ(χ, ν)(f )| is bounded. Letdν be a Lebesgue measure
A∗. Note that the set of singular points inT ∗ × A∗ has zero measure with respect to
measuredχdν onT ∗ ×A∗. From aboveT ∗ = ⋃

ζ∈Γ ∗ T ∗
ζ , thus we may define the functio

Ψ onΓ ∗ by

Ψ : ζ 
−→
∑
χ∈T ∗

ζ

∫

A∗
p(χ, ν)Θ(χ, ν)(f ) dν.

ThenΨ is continuous (see character formula given in [14, Proposition 4.3.10]) except o
a set of measure zero. The topology onΓ ∗ is the usual topology on a product of circ
groups.

3.2. Plancherel formula

Normalize the measuredx on G so thatdx1 is the standard Haar measure onG1 (see
[11, Section 7]). We calldx on G the Γ -standard Haar measure. Withdx fixed, we ob-
tained the induced measuresdxj on Gj defined in Section 2. Letdkj denote the measur
of Kj . Note thatKj is aj r -fold cover ofK1. Moreover, the volume ofK1 is 1 under the
standard Haar measure forG1. Consequently,

∫
Kj

dkj = j r anddxj is j r times the stan

dard Haar measure onGj . Fix f ∈ C∞
c (G). Then the Plancherel formula ofGj associated

to the Haar measuredxj , according to Harish-Chandra in [11], is given by

Φj (f )(ej ) =
∑

T ·A∈Car(G)

C(Gj/A)

jr

∑
χ∈(T /Γj )∗

d(χ)

×
∫

A∗
µ(A : χ : ν)Tr

(
πχ,ν

(
Φj (f )

))
dν.

Here C(Gj/A) = c(Gj/A)−2γ (Gj/A)−1[w(Gj/A)]−1 wherec(Gj/A) (see [11, Sec
tion 11]), γ (Gj/A) (see [11, Lemma 2.6]) and[w(Gj/A)] (see [11, p. 168]) are con
stants. From the definition of these constants, we see that they are independej
becauseGj is a quotient ofG by a central discrete subgroup contained inK. We
set C(G/A) = C(Gj/A). The positive numberd(χ) is the formal degree of the dis
crete series representationπχ wheneverχ is regular and zero otherwise. The functi
µ(A : χ : ν) is the density function for the Plancherel measure. By Proposition 2.1, we ha
Tr(πχ,ν(Φj (f ))) = Θ(χ,ν)(f ). We shall identify(T /Γj )

∗ with the set ofΓj -invariant
characters inT ∗. Thus we may rewrite the above formula as

Φj (f )(ej ) =
∑

T ·A∈Car(G)

C(G/A)

jr

∑
ζ∈(Γ/Γj )∗

∑
χ∈T ∗

ζ

d(χ)

×
∫
∗

µ(A : χ : ν)Θ(χ, ν)(f ) dν.
A
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From the formula ofd(χ) (see [11, Section 23]), we see thatχ 
→ d(χ) is a continuous
function onT ∗. The functionµ(A : χ : ν) is part of the density function for the Planche
measure. From the computation in [11], one can see thatµ(A : χ : ν) defines a positive
valued continuous function onT ∗ × A∗. In fact, as pointed out in [11],µ(A : χ : ν) is a
product of polynomials and hyperbolic type functions that appear inSL(2,R) computa-
tions. Thusµ(A : χ : ν) naturally extends to a continuous function on the spaceT ∗ × A∗
which we would still denote byµ(A : χ : ν). We note thatd(χ)µ(A : χ : ν) has growth
bounded by some polynomial onT ∗ ×A∗. Thus, as explained in Section 3.1, the followi
map is continuous onT ∗ except on a set of measure zero:

ζ 
→
∑
χ∈T ∗

ζ

d(χ)

∫

A∗
µ(A : χ : ν)Θ(χ, ν)(f ) dν.

Letting j tend to infinity, we get

f (e) =
∑

T ·A∈Car(G)

C(G/A)

∫

ζ∈Γ ∗

∑
χ∈T ∗

ζ

d(χ)

∫

A∗
µ(A : χ : ν)Θ(χ, ν)(f ) dν dζ.

Thus, by the uniqueness of the Plancherel measure and Theorem 2.3, the Planch
mula ofG associated to the Haar measuredx is given by

f (e) =
∑

T ·A∈Car(G)

C(G/A)

∫

T ∗
d(χ)

∫

A∗
µ(A : χ : ν)Θ(χ, ν)(f ) dν dχ.
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