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This paper describes an explicit combinatorial formula for the prod-

uct of companion matrices. The method relies on the connections

between matrix algebra and associated combinatorial structures to

enumerate the paths in an unweighted digraph. As an application,

we obtain bases for the solution space of the linear difference equa-

tion with variable coefficients.
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1. Introduction

The product of companionmatrices naturally arises in the solution of linear difference equation, in

the studies of certain random walks and Markov Chains. There are also interests in the eigenvalues of

the product of companion matrices (see [6,7]). In this paper, we use a combinatorial method to find

an explicit formula for the entries of the product of companion matrices. The formula is then applied

to solve the general linear difference equation with variable coefficients.

Taking powers of a matrix using combinatorics and weighted digraphs are discussed in Section 3.1

of [1] and further studied in [3] for the companion matrix case. Unaware of these results, the authors

discovered a combinatorial method of taking product of companion matrices (of the same size) from
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a new perspective. The different perspective yields the same digraph in [3] but without weighted

edges. This allows the combinatorial method to extend beyond the homogeneous power of a compan-

ion matrix to the (non-homogeneous) product of companion matrices. The authors’ construction also

highlights natural connections betweenmatrix algebra and the paths of the associated digraph. More-

over the vertices of the digraph correspond to the summands in the decomposition of a companion

matrix over its rows.

As one may expect, the answer for an explicit formula for the entries of the product of companion

matrices should be quite complicated. However, the use of a digraph has greatly helped in managing

and organizing our computations. Moreover, the interesting involvement of the permutation group in

the final answer allows us to write a reasonably short formula for the product of companion matrices

and a simple description of the solution space of a linear difference equation. Indeed, our method is

another ode to the usefulness of graphs and groups.

We should point out that although explicit solution for general linear difference equations are given

in [4], they appear to be unmotivated andnomethods of solution are discussed. In contrast, themethod

of solution in this paper connects the solutions of linear difference equation with variable coefficients

to enumerative combinatorics in an associated digraph. In addition, we also show that the solution

space of a linear homogeneous difference equation is given by the linear combinations of the integer

translates of a single function Tk,m(�c, r) (see Section 2, Corollaries 6.1 and 6.2).

This article is organized as follows. Section 2 defines notations and states the key formula for

the product of companion matrices. Section 3 explains the construction of the digraph associated to

companion matrices of the same size. Section 4 gives important reduction relations and describes the

algebraic structures that simplify our computations (see Lemma 4.1 and Proposition 4.2). In Section

5 we put together all results to compute the product of companion matrices. We apply the product

formula for the companion matrices to solve the linear difference equation in Section 6. We make

some concluding remarks in Section 7.

2. Notations and key formula

In this section, we define notations and state the formula for the product of companion matrices.

We will adopt all notations established in this section throughout the paper. Let N0 denote the set of

non-negative integers. For each positive integers k,m and 1 � j � k, define the set:

Q(k,m) = {(a1, a2, . . . , ak) ∈ N0
k; a1 + 2a2 + · · · + jaj + · · · + kak = m}.

For each �a = (a1, a2, . . . , ak) ∈ Q(k,m), define the integer-valued function χ�a on the set of integers

{1, 2, . . . , a1 + a2 + · · · + ak} by

χ�a(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 � s � a1

2 a1 + 1 � s � a1 + a2
...

j a1 + · · · + aj−1 + 1 � s � a1 + · · · aj−1 + aj
...

k a1 + · · · + ak−1 + 1 � s � a1 + · · · ak−1 + ak.

We note here that for any 1 � j � k, if aj = 0 then jwill not be in the range of χ�a. Moreover, we have:

a1+a2+···+ak∑
s=1

χ�a(s) = a1(1) + a2(2) + · · · + ak(k) = m.

The purpose of defining χ�a is to aid in listing all permutations of a given multiset (a generalization of

set where members are allowed to repeat). For example, χ�a is associated to the multiset
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R = {1, 1, . . . , 1, 2, 2, . . . , 2, . . . , k, k, . . . , k}
with a1 copies of 1’s, a2 copies of 2’s, …, and ak copies of k’s. By definition of χ�a, we can rewrite the

set R:

R = {χ�a(1), χ�a(2), . . . , χ�a(a1), χ�a(a1 + 1), χ�a(a1 + 2), . . . , χ�a(a1 + a2), . . . ,

χ�a(a1 + · · · + ak−1), χ�a(a1 + · · · + ak−1 + 1), . . . , χ�a(a1 + · · · + ak)}
= {χ�a(j); 1 � j � (a1 + · · · + ak)} .

Let Sn denote the symmetric group of order n. For σ ∈ Sn, let σ(s) denote the image of s under σ . To

list all permutations (with repeats) of the multiset R, we consider the sets, for σ ∈ Sa1+···+ak ,

Rσ = {χ�a(σ (j)); 1 � j � (a1 + · · · + ak)} .

The total number of distinct Rσ is given by

|Sa1+a2+···+ak |
a1!a2! · · · ak! =

⎛
⎝ a1 + a2 + · · · + ak

a1, a2, . . . , ak

⎞
⎠ .

This systematicwayof listingpermutationsof agivenmultisetwill help inkeepingournotations simple

in some rather complicated formulas for products of companion matrices (below) and solutions for

linear difference equation (see Section 6).

We state our formula for products of companion matrices here. Let c1(m), c2(m), . . . , ck(m) be

real-valued functions over the integers. Set �c(m) = (c1(m), c2(m), . . . , ck(m)). Form ∈ N, define the

function Tk,m(�c, r):

Tk,m(�c, r) = ∑
�a∈Q(k,m)

1

a1!a2! · · · ak!
∑

σ∈Sa1+···+ak

a1+···+ak∏
n=1

cχ�a(σ (n))

⎛
⎝r +

n−1∑
s=1

χ�a(σ (s))

⎞
⎠.

Since �c is fixed throughout this paper, we shall write Tk,m(�c, r) as Tk,m(r). The role of r will become

clear in Section 5. Moreover, since Tk,m(0) repeatedly occurs in the solution for a linear difference

equation, we further simplify notations and write Tk,m(0) as Tk,m. Define the companion matrix C(m)
associated to the vector-valued function �c(m) = (c1(m), c2(m), . . . , ck(m)) by

C(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1(m) c2(m) . . . ck−1(m) ck(m)

1 0 . . . 0 0

0 1 . . . 0 0

...
... . . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 2.1. Let mij be the (i, j)-entry of the product C(0)C(1) · · · C(m). Then mij = ∑k
p=j cp(m− i +

1 + j − p)Tk,m−i+1+j−p(i − 1).

Theorem 2.1 will be proved in Section 5. It will be used in Section 6 to solve linear difference

equations.

3. The companion digraph

Recall the sequence of companion matrices C(n) associated to the vector-valued function �c(n) =
(c1(n), c2(n), . . . , ck(n)). The first step in finding a formula for the matrix product C(1)C(2) · · · C(m)
is to associate an unweighted digraph G to the companionmatrix C(n). This digraphwith weights also
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appeared in [3] to take powers of a single companion matrix. However, we obtain G from a different

perspective using matrix algebra. We call this digraph the companion digraph of C(n).
Let Ei,j be the matrix with all entries 0 except 1 at the (i, j)-entry. Define the matrices:

Uj = Ej,j−1; and U1(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1(n) c2(n) . . . ck(n)

0 0 . . . 0

0 0 . . . 0

...
... . . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
k∑

p=1

cp(n)E1,p.

Then we have C(n) = (U1(n) + U2 + U3 + · · · + Uk). We will construct a graph G to keep track of

vanishing and non-vanishing products between the matrices U1(n); (1 � n � m), U2, ..., Uk. We now

compute the pairwise multiplication of these matrices below.

U1(s)U1(t) =
⎛
⎝ k∑

p=1

cp(s)E1,p

⎞
⎠ ·

⎛
⎝ k∑

p=1

cp(t)E1,p

⎞
⎠ = c1(s)E1,1 ·

⎛
⎝ k∑

p=1

cp(t)E1,p

⎞
⎠

= c1(s) ·
⎛
⎝ k∑

p=1

cp(t)E1,p

⎞
⎠ = c1(s)U1(t),

U2 · U1(t) = E2,1 ·
⎛
⎝ k∑

p=1

cp(t)E1,p

⎞
⎠ =

k∑
p=1

cp(t)E2,p.

For each fixed 3 � i � k and any 2 � j � k,

Ui · U1(t) = Ei,i−1 ·
⎛
⎝ k∑

p=1

cp(t)E1,p

⎞
⎠ =

k∑
p=1

cp(t)Ei,i−1E1,p = 0,

U1(t) · Uj =
⎛
⎝ k∑

p=1

cp(t)E1,p

⎞
⎠ · Ej,j−1 = cj(t)E1,j−1,

U2 · Uj = E2,1 · Ej,j−1 = 0,

Ui · Uj = Ei,i−1 · Ej,j−1 =
{
Ui · Ui−1 = Ei,i−2 �= 0; j = i − 1.

0; j �= i − 1.

We summarize our observations. For each 1 � i, j � k and any integers s and t:

Ui · Uj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1(s)U1(t) = c1(s)U1(t);
U1(t) · Uj = cj(t)E1,j−1; 2 � j � k.

U2 · U1(t) =
k∑

p=1

cp(t)E2,p;

Ei,i−2; 3 � i � k and j = i − 1.

0; otherwise.

(1)

Without loss of generality, we shall assume that c1, c2, …, ck are all non-trivial functions. Then U1(s) ·
U1(t) andU1(t)·Uj arenon-zero for any j, s and t.Moreover the vanishing (andnon-vanishing) relations
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.  .  .
U2 U3 U4 Uk-1 Uk

U1

Fig. 1. Companion digraph for matrix C(n).

above are dependent only on the subscripts i and j but independent of s and t. We now construct the

graph G associated to all companion matrices C(n) to keep track of non-vanishing products of U1(n);
(1 � n � m), U2, ..., Uk . Since vanishing property is independent of n, we shall write U1(n) as U1.

Consider the digraph G with k vertices each corresponding to matrices Ui (1 � i � k). Without

confusion, we write the vertex set

V(G) = {Ui; 1 � i � k}.
Let A, B ∈ V(G). The directed edge AB is in G if and only if the corresponding matrix multiplication

AB �= 0. Therefore according to the pairwise multiplication of Ui (1 � i � k) above, we see that the

edge set is

E(G) = {UiUi−1,U1Ui,U1U1; 2 � i � k}.
Fig. 1 depicts the graph G. We call G the companion digraph formatrix C for a k× k companionmatrix.

We note here that if any of the functions c1, c2, …, ck is identically zero then the graph G will reduce

in size. But in this paper we will consider the most general case where c1, c2, …, ck are all non-trivial

functions.

Weroughly indicateherehowthedigraphGwouldbehelpful. Consider theproductC(1)C(2) · · · C(m).
We compute

C(1)C(2) · · · C(m) = ∏m

n=1
(U1(n) + U2 + U3 + · · · + Uk)

= ∑
A1A2 · · · Am,

here An ∈ {U1(n),U2,U3, · · · ,Uk} for 1 � n � m and the sum is over all products A1A2 · · · Am. By

the relations in (1), the product A1A2 · · · Am is non-zero only if it admits a path of length (m − 1) in

the digraph G. Thus to simplify the sum, we use the digraph and the relations in (1) to pick up all non-

zero terms. This computation could be systematically done and its crux is the useful order-reducing

relations given in the next section.

4. Some useful products and order-reducing relations

In this section, we prove order-reducing relations useful for computing a formula for the matrix

product C(1)C(2) · · · C(m).
For 2 � j � k, define the product Uj = UjUj−1Uj−2 · · ·U2. Note that U2 = U2. We compute:

Uj = Ej,j−1Ej−1,j−2 · · · E2,1 = Ej,1. Moreover, we have:

UjU1(n) = Ej,1

k∑
i=1

ci(n)E1,i =
k∑

i=1

ci(n)Ej,i.

From Eq. (1), we make the following critical observations. For easy reference later, we state them here

as a lemma:
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Lemma 4.1. For s, t ∈ N0 and 2 � i, j � k we have:

(1) U1(s) · UiU1(t) = ci(s)U1(t),
(2) U1(s) · U1(t) = c1(s)U1(t),
(3) UjU1(s) · UiU1(t) = ci(s)UjU1(t),

(4) UjU1(s) · U1(t) = c1(s)UjU1(t).

We observe from Lemma 4.1 that the set of matrices

M = {UiU1(n),U1(n) : n ∈ N and 2 � i � k}
forms an algebra over the ring of polynomial generated by c1, c2, · · · ck . The algebraic structures in

this observation captures the key properties that make it possible to compute formulas in Theorem

4.4. We state here the interesting observation as a proposition:

Proposition 4.2. Let R be the ring of polynomial generated by c1, c2, · · · ck over the complex numbers.

Define M as above and set N1 = {U1(n) : n ∈ N}, and Ni = {UiU1(n) : n ∈ N} for 2 � i � k. Consider

the R-module R[M] generated by the set M. Then R[M] is an R-algebra. Moreover, R[Ni] is a right ideal of

R[M] for 1 � i � k.

Recall that at the end of Section 3 we see that to evaluate the matrix product C(1)C(2) · · · C(m),
it amounts to finding non-zero products admitted by paths of length (m − 1) in G. We shall do this

computation here.

For �a = (a1, a2, · · · , ak) ∈ Q(k,m), consider the non-zero term P1(�a) admitted by the following

path L1(�a) in the digraph G ending at U1:

L1(�a) = (U1)
a1(U2U1)

a2 · · · (UrU1)
ar · · · (UkU1)

ak . (2)

Note that the abovepath is a closedpath (starting atU1) onlywhen a1 � 1. In any case, aswe transverse

through the above path, we are transversing through closed paths based at U1 of increasing length.

Moreover the length of L1(�a) is a1 + 2a2 + · · · + kak = m − 1. We give an example for L1(�a) below
and illustrate how to write its associated P1(�a).
Example 4.3. Consider the companion matrix C(n) associated to the 4-tuple function �c(n) = (c1(n),
c2(n), c3(n), c4(n)). Consider also C(1)C(2) · · · C(13). Then in the notations above m = 13. Fix

�a = (2, 2, 1, 1) ∈ Q(4, 13). Then χ�a is given by

χ�a(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 1 � s � 2

2 3 � s � 4

3 s = 5

4 s = 6

.

The companion graph for C(n) is given in Fig. 2. The multiset associated to χ�a is given by

R = {1, 1, 2, 2, 3, 4}. Then the path L1(�a) is
(U1)

2(U2U1)
2(U3U2U1)(U4U3U2U1).

Then the associated matrix product P1(�a) is given by

U1(1) · U1(2) · (U2U1(4)) · (U2U1(6)) · (U3U2U1(9)) · (U4U3U2U1(13)).

Using Lemma 4.1, we evaluate:

P1(�a) = U1(1) · U1(2) · (U2U1(4)) · (U2U1(6)) · (U3U1(9)) · (U4U1(13))

= c1(1)c2(2)c2(4)c3(6)c4(9) · U1(13).
(3)
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U2 U3 U4

U1

Fig. 2. Companion digraph for matrix C(n).

Using χ�a, we could write

P1(�a) = Uχ�a(1)(1) · Uχ�a(2)(2) · (Uχ�a(3)U1(4))

(Uχ�a(4)U1(6)) · (Uχ�a(5)U1(9)) · (Uχ�a(6)U1(13)).

Further applying χ�a, we have:

P1(�a) = Uχ�a(1)(χ�a(1)) · Uχ�a(2)

⎛
⎝ 2∑

s=1

χ�a(s)
⎞
⎠ · Uχ�a(3)U1

⎛
⎝ 3∑

s=1

χ�a(s)
⎞
⎠

× Uχ�a(4)U1

⎛
⎝ 4∑

s=1

χ�a(s)
⎞
⎠ · Uχ�a(5)U1

⎛
⎝ 5∑

s=1

χ�a(s)
⎞
⎠ · Uχ�a(6)U1

⎛
⎝ 6∑

s=1

χ�a(s)
⎞
⎠

=
6∏

n=1

Uχ�a(n)U1

(
n∑

s=1

χ�a(s)
)
.

Here note that we adopt the convention U1U1(n) = U1(n). Applying Lemma 4.1, we have:

P1(�a) = cχ�a(2)(χ�a(1))cχ�a(3)

⎛
⎝ 2∑

s=1

χ�a(s)
⎞
⎠ cχ�a(4)

⎛
⎝ 3∑

s=1

χ�a(s)
⎞
⎠

× cχ�a(5)

⎛
⎝ 4∑

s=1

χ�a(s)
⎞
⎠ cχ�a(6)

⎛
⎝ 5∑

s=1

χ�a(s)
⎞
⎠ · U1

⎛
⎝ 6∑

s=1

χ�a(s)
⎞
⎠

=
6∏

n=2

cχ�a(n)

⎛
⎝n−1∑

s=1

χ�a(s)
⎞
⎠ · Uχ�a(1)U1(13)

where Uχ�a(1)U1(13) = U1U1(13) = U1(13).

In general, the non-zero term P1(�a) admitted by the following path L1(�a) in the digraph G ending

at U1:

L1(�a) = (U1)
a1(U2U1)

a2 · · · (UrU1)
ar · · · (UkU1)

ak (4)
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is given by:

P1(�a) =
a1∏

n1=1

U1

(
n1∑
s=1

χ�a(s)
)

·
a2∏

n2=1

U2U1

⎛
⎝a1+n2∑

s=1

χ�a(s)
⎞
⎠

· · ·
ar∏

nr=1

UrU1

⎛
⎝a1+···+ar−1+nr∑

s=1

χ�a(s)
⎞
⎠

· · ·
ak∏

nk=1

UkU1

⎛
⎝a1+···+ak−1+nk∑

s=1

χ�a(s)
⎞
⎠ .

(5)

We could also write:

P1(�a) =
a1∏

m1=1

Uχ�a(m1)

(
m1∑
s=1

χ�a(s)
)

·
a1+a2∏

m2=a1+1

Uχ�a(m2)U1

(
m2∑
s=1

χ�a(s)
)

· · ·
a1+···+ar−1+ar∏

mr=a1+···+ar−1+1

Uχ�a(mr)U1

(
mr∑
s=1

χ�a(s)
)

· · ·
a1+···+ak−1+ak∏

mk=a1+···+ak−1+1

Uχ�a(mk)U1

(
mk∑
s=1

χ�a(s)
)

=
a1+···+ak∏

n=1

Uχ�a(n)U1

(
n∑

s=1

χ�a(s)
)

.

(6)

We note here that χ�a(mr) = r for all 1 � r � k. By Lemma 4.1, we could further simplify and write:

P1(�a) =
a1+···+ak∏

n=2

cχ�a(n)

⎛
⎝n−1∑

s=1

χ�a(s)
⎞
⎠ · Uχ�a(1)U1(m). (7)

By the same labeling idea using χ�a above, we may write L1(�a) =
a1+···+ak∏

n=1

Uχ�a(n)U1. To find all other

paths of length (m − 1) ending at U1, consider the family of paths in G:

Lσ (�a) =
a1+···+ak∏

n=1

Uχ�a(σ (n))U1, (8)

where �a ∈ Q(k,m) and σ ∈ Sa1+···+ak . This exhaustively lists with repeats all paths of length (m− 1)

ending at U1 containing a1 (U1)-word, a2 (U2U1)-word, ..., ar (UrU1)-word, ..., ak (UkU1)-word. The

number of such path is

|Sa1+a2+···+ak |
a1!a2! · · · ak! =

⎛
⎜⎝ a1 + a2 + · · · + ak

a1, a2, . . . , ak

⎞
⎟⎠ .
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Tracing from U1 in the graph G, it is easy to see that all other paths of length (m − 1) ending at say

Uj+1 are of the form:

Lσ (�a)UpUp−1 · · ·Uj+1,

where 1 � j < p � k, �a ∈ Q(k,m + j − p) and σ ∈ Sa1+a2+···+ak .

Therefore all non-zero terms in the expansion of C(1)C(2) · · · C(m) take the two forms:

1. Pσ (�a) where �a ∈ Q(k,m) and each σ ∈ Sa1+a2+···+ak .

2. Pσ (�a)UpUp−1 · · ·Uj+1 for any j and p that 1 � j < p � k,

�a ∈ Q(k,m + j − p) and σ ∈ Sa1+a2+···+ak .

Accounting for repeats and summing we have the following theorem:

Theorem 4.4. The product C(1)C(2) · · · C(m) is given by:

C(1)C(2) · · · C(m) = ∑
�a∈Q(k,m)

1

a1!a2! · · · ak!
∑

σ∈Sa1+···+ak

Pσ (�a)

+
k∑

p=2

p−1∑
j=1

∑
�a∈Q(k,m+j−p)

1

a1!a2! · · · ak!
∑

σ∈Sa1+···+ak

Pσ (�a)UpUp−1 · · ·Uj+1.

(9)

Also the product Pσ (�a) with �a ∈ Q(k, r) is:

Pσ (�a) =
a1+···+ak∏

n=1

Uχ�a(σ (n))U1

(
n∑

s=1

χ�a(σ (s))

)

=
a1+···+ak∏

n=2

cχ�a(σ (n))

⎛
⎝n−1∑

s=1

χ�a(σ (s))

⎞
⎠ · Uχ�a(σ (1))U1(r).

(10)

Note that

a1+···+ak∑
s=1

χ�a(σ (s)) =
a1+···+ak∑

s=1

χ�a(s) = r as σ ∈ Sa1+···+ak .

Wewill also need a formula for thematrix product C(i+1)C(i+2) · · · C(m) for 1 � i � m. To account

for the translation by i, we define the product Pσ (�a, i) for �a ∈ Q(k, r):

Pσ (�a, i) =
a1+···+ak∏

n=1

Uχ�a(σ (n))U1

(
i +

n∑
s=1

χ�a(σ (s))

)

=
a1+···+ak∏

n=2

cχ�a(σ (n))

⎛
⎝i +

n−1∑
s=1

χ�a(σ (s))

⎞
⎠ · Uχ�a(σ (1))U1(r − i).

(11)

Set B(q) = C(i + q) for 1 � q � m − i. Then B(q) is the companion matrix associated to the

vector-valued function �b(q) = �c(i + q). We apply Theorem 4.4 to compute B(1)B(2) · · · B(m −
i) = C(i + 1)C(i + 2) · · · C(m). Replacing m by m − i, and translating �c by i, we obtain the

following corollary:
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Corollary 4.5. The product C(i + 1)C(i + 2) · · · C(m) is given by:

C(i + 1) · · · C(m) = ∑
�a∈Q(k,m−i)

1

a1!a2! · · · ak!
∑

σ∈Sa1+···+ak

Pσ (�a, i)

+
k∑

p=2

p−1∑
r=1

∑
�a∈Q(k,m−i+j−p)

1

a1!a2! · · · ak!
∑

σ∈Sa1+···+ak

Pσ (�a, i)UpUp−1 · · ·Uj+1.

(12)

5. Computing the entries of C(0)C(1)C(2) · · · C(m)

We could now compute the (i, j)-entrymij of C(0)C(1)C(2) · · · C(m). It may appear that Theorem 4.4

could already give us the entry formula for a product of companionmatrices but after some considera-

tions one could see that notations aremuchmore complicated ifwe look directly at C(1)C(2) · · · C(m).
Interestingly, including C(0) would help simplify our final formula for mij .

We recall the following matrices:

U1(n) =
k∑

r=1

cr(n)E1,r; (13)

UiU1(n) =
k∑

j=1

cj(n)Ei,j. (14)

By Lemma 4.1, we also have:

U1(n)UpUp−1 · · ·Uj+1 =
k∑

r=1

cr(n)E1,rEp,p−1Ep−1,p−2 · · · Ej+1,j = cp(n)E1,j, (15)

UiU1(n)UpUp−1 · · ·Uj+1 =
k∑

r=1

cr(n)Ei,rEp,p−1Ep−1,p−2 · · · Ej+1,j = cp(n)Ei,j. (16)

For clarity purposes, we will computem1j first and then consider the general entry mij . Observe from

Eqs. (13)–(16) that only the product terms beginning with U1 and ending with U1 or Uj+1 would

contribute to the (1, j)-entry of C(0)C(1)C(2) · · · C(m).
Now C(0) = (U1(0) + U2 + · · · + Uk). Then by the above observation and the sum formula

for C(1)C(2) · · · C(m) in Theorem 4.4, the entry m1j of C(0)C(1)C(2) · · · C(m) is supported by the

matrices of the forms U1(0)Pσ (�a) and U1(0)Pσ (�a)UpUp−1 · · ·Uj+1 for j+ 1 � p � k. So we only need

to collect the (1, j)-entry of the product U1(0)C(1)C(2) · · · C(m) given by:

∑
�a∈Q(k,m)

1

a1!a2! · · · ak!
∑

σ∈Sa1+···+ak

U1(0)Pσ (�a)

+
k∑

p=j+1

∑
�a∈Q(k,m+j−p)

1

a1!a2! · · · ak!
∑

σ∈Sa1+···+ak

U1(0)Pσ (�a)UpUp−1 · · ·Uj+1

(17)

Referring to the formula of Pσ (�a) in Theorem 4.4, we compute for j � p � k, the product U1(0)Pσ (�a):

U1(0)Pσ (�a) =
a1+···+ak∏

n=2

cχ�a(σ (n))

⎛
⎝n−1∑

s=1

χ�a(σ (s))

⎞
⎠ · U1(0)Uχ�a(σ (1))U1(m + j − p)
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=
a1+···+ak∏

n=2

cχ�a(σ (n))

⎛
⎝n−1∑

s=1

χ�a(σ (s))

⎞
⎠ · cχ�a(σ (1))(0) · U1(m + j − p)

=
a1+···+ak∏

n=1

cχ�a(σ (n))

⎛
⎝n−1∑

s=1

χ�a(σ (s))

⎞
⎠ · U1(m + j − p).

(18)

And also

U1(0)Pσ (�a)UpUp−1 · · ·Uj+1 =
a1+···+ak∏

n=1

cχ�a(σ (n))

⎛
⎝n−1∑

s=1

χ�a(σ (s))

⎞
⎠ · U1(m + j − p)UpUp−1 · · ·Uj+1

=
a1+···+ak∏

n=1

cχ�a(σ (n))

⎛
⎝n−1∑

s=1

χ�a(σ (s))

⎞
⎠ · cp(m + j − p)E1j. (19)

Using Eqs. (17)–(19), we obtain the (1, j)-entry of the matrix product C(0)C(1)C(2) · · · C(m):

m1j = ∑
�a∈Q(k,m)

1

a1!a2! · · · ak!

× ∑
σ∈Sa1+···+ak

a1+···+ak∏
n=1

cχ�a(σ (n))

⎛
⎝n−1∑

s=1

χ�a(σ (s))

⎞
⎠ · cj(m)

+
k∑

p=j+1

∑
�a∈Q(k,m+j−p)

1

a1!a2! · · · ak!

× ∑
σ∈Sa1+···+ak

a1+···+ak∏
n=1

cχ�a(σ (n))

⎛
⎝n−1∑

s=1

χ�a(σ (s))

⎞
⎠ · cp(m + j − p)

=
k∑

p=j

cp(m + j − p) · ∑
�a∈Q(k,m+j−p)

1

a1!a2! · · · ak!

× ∑
σ∈Sa1+···+ak

a1+···+ak∏
n=1

cχ�a(σ (n))

⎛
⎝n−1∑

s=1

χ�a(σ (s))

⎞
⎠ .

(20)

Recall Tk,m in Section 2 that

Tk,m = ∑
�a∈Q(k,m)

1

a1!a2! · · · ak!
∑

σ∈Sa1+···+ak

a1+···+ak∏
n=1

cχ�a(σ (n))

⎛
⎝n−1∑

s=1

χ�a(σ (s))

⎞
⎠ .

Therefore we have:

m1j =
k∑

p=j

cp(m + j − p)Tk,m+j−p. (21)

To obtain mij for 2 � i � k, we observe from Eqs. (13)–(16) that only the product terms beginning

with Ui and ending with U1 or Uj+1 would contribute to the (i, j)-entry of C(0)C(1)C(2) · · · C(m). So
we only need to collect the (i, j)-entry of the product

UiU1(i − 1)C(i)C(i + 1) · · · C(m).
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By Corollary 4.5, UiU1(i − 1)C(i)C(i + 1) · · · C(m) is given by:

∑
�a∈Q(k,m−i+1)

1

a1!a2! · · · ak!
∑

σ∈Sa1+···+ak

UiU1(i − 1)Pσ (�a, i − 1)

+
k∑

p=j+1

∑
�a∈Q(k,m−i+1+j−p)

1

a1!a2! · · · ak! (22)

× ∑
σ∈Sa1+···+ak

UiU1(i − 1)Pσ (�a, i − 1)UpUp−1 · · ·Uj+1.

Referring to the formula of Pσ (�a, i − 1) in Corollary 4.5, we compute for j � p � k, the products:

UiU1(i − 1)Pσ (�a, i − 1) =
a1+···+ak∏

n=2

cχ�a(σ (n))

⎛
⎝i − 1 +

n−1∑
s=1

χ�a(σ (s))

⎞
⎠

× UiU1(i − 1)Uχ�a(σ (1))U1(m − i + 1 + j − p)

=
a1+···+ak∏

n=2

cχ�a(σ (n))

⎛
⎝i − 1 +

n−1∑
s=1

χ�a(σ (s))

⎞
⎠ (23)

× cχ�a(σ (1))(i − 1) · U1(m − i + 1 + j − p)

=
a1+···+ak∏

n=1

cχ�a(σ (n))

⎛
⎝i − 1 +

n−1∑
s=1

χ�a(σ (s))

⎞
⎠

·U1(m − i + 1 + j − p)

and

UiU1(i − 1)Pσ (�a)UpUp−1 · · ·Uj+1 =
a1+···+ak∏

n=1

cχ�a(σ (n))

⎛
⎝i − 1 +

n−1∑
s=1

χ�a(σ (s))

⎞
⎠

× U1(m − i + 1 + j − p)UpUp−1 · · ·Uj+1 (24)

=
a1+···+ak∏

n=1

cχ�a(σ (n))

⎛
⎝i − 1 +

n−1∑
s=1

χ�a(σ (s))

⎞
⎠

·cp(m − i + 1 + j − p)Eij.

Using Eqs. (22)–(24), we obtain the (i, j)-entry of the matrix product C(0)C(1)C(2) · · · C(m):

mij = ∑
�a∈Q(k,m−i+1)

1

a1!a2! · · · ak!

× ∑
σ∈Sa1+···+ak

a1+···+ak∏
n=1

cχ�a(σ (n))

⎛
⎝i − 1 +

n−1∑
s=1

χ�a(σ (s))

⎞
⎠ · cj(m − i + 1)

+
k∑

p=j+1

∑
�a∈Q(k,m−i+1+j−p)

1

a1!a2! · · · ak!

× ∑
σ∈Sa1+···+ak

a1+···+ak∏
n=1

cχ�a(σ (n))

⎛
⎝i − 1 +

n−1∑
s=1

χ�a(σ (s))

⎞
⎠ · cp(m − i + 1 + j − p).
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mij =
k∑

p=j

cp(m − i + 1 + j − p) · ∑
�a∈Q(k,m−i+1+j−p)

1

a1!a2! · · · ak!

× ∑
σ∈Sa1+···+ak

a1+···+ak∏
n=1

cχ�a(σ (n))

⎛
⎝i − 1 +

n−1∑
s=1

χ�a(σ (s))

⎞
⎠

=
k∑

p=j

cp(m − i + 1 + j − p)Tk,m−i+1+j−p(i − 1). (25)

This proves Theorem 2.1.

6. The linear difference equation

We apply Theorem 2.1 to solve linear difference equations. Consider the kth order linear homoge-

neous difference equation:

X(m + k) = α1(m)X(m + k − 1) + α2(m)X(m + k − 2) + · · · + αk(m)X(m). (26)

Our equation is kth order only if αk(m) is non-zero for somem. Without loss of generality, we assume

that αk(0) is non-zero throughout this exposition. Let {A(m)} be the sequence of companion matrices

associated to the function �α(m) = (α1(m), α2(m), . . . , αk(m)).
Let B(m) = (X(m + k − 1), X(m + k − 2), . . . , X(m))T . Then rewriting Eq. (26) as a system of

equations gives⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X(m + k)

X(m + k − 1)

...

X(m + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1(m)X(m + k − 1) + · · · + αk(m)X(m)

X(m + k − 1)

...

X(m + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

So B(m+1) = A(m) ·B(m). Then B(m+1) = A(m)A(m−1) · · · A(0) ·B(0). Letmij be the (i, j)-entry

of the product A(m)A(m− 1) · · · A(0). Set B(0) = (0, . . . , 0, 1, 0, . . . , 0)T where 1 is at the jth entry

for 1 � j � k. Then B(m + 1) = (m1j,m2j, . . . ,mkj)
T so we have:

m1j = X(m + k), m2j = X(m + k − 1), . . . ,mkj = X(m + 1).

In general, consider the non-homogeneous linear difference equation:

X(m + k) = α1(m)X(m + k − 1) + α2(m)X(m + k − 2) + · · · + αk(m)X(m) + f (m) (27)

Set F(m) = (f (m), 0, . . . , 0)T . Then writing as a system of equations, we have:

B(m + 1) = A(m) · B(m) + F(m).

Iterating the equation we have:

B(m + 1) =
m∏

n=0

A(m − n) · B(0) +
m−1∑
q=0

[ q∏
n=0

A(m − n) · F(m − q − 1)

]
+ F(m). (28)

Using the product formula for companion matrix with �c(j) = �α(m − j) (0 � j � m) in Theorem

2.1 yields solutions for the difference equations (26) and (27). Moreover, the first entry of the last

two summands of (28) give a particular solution of Eq. (27). We summarize these observations in a

corollary (of Theorem 2.1).
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Corollary 6.1. Set �c(n) = �α(m − n) for 0 � n � m. A basis for the solution space of Eq. (26) is given by,

1 � j � k,

�j(m + k) =
k∑

p=j

αp(p − j)Tk,m+j−p.

Moreover, a particular solution of Eq. (27) is given by

�(m + k) = f (m) +
m−1∑
q=0

k∑
p=1

αp(m − q − 1 + p)Tk,q+1−pf (m − q − 1).

Next, we make some interesting observations about the solution space of Eq. (26). For B(0)
= (0, . . . , 0, 1)T , the solution of Eq. (26) is �k(m + k) = αk(0)Tk,m. Moreover, we also have B(1) =
(αk(0), 0, . . . , 0)

T = αk(0) · (1, 0, . . . , 0)T . Note that αk(0) is non-zero and that (1, 0, . . . , 0)T is

the initial condition for solution �1(m + k). Therefore by a shift of index we have

�1(m + k) = 1

αk(0)
�k(m + k + 1) = Tk,m+1.

By Corollary 6.1, Tk,m+1 =
k∑

p=1

αp(p − 1)Tk,m+1−p for m � 0.

Moreover, the formula for �j(m + k) gives:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1(m + k)

�2(m + k)

...

�k(m + k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αk(k − 1) αk−1(k − 2) . . . α2(1) α1(0)

0 αk(k − 2) . . . α3(1) α2(0)

...
... . . .

...
...

0 0 . . . 0 αk(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tk,m−k+1

Tk,m−k+2

...

Tk,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If αk(j) �= 0 for all 0 � j � k − 1, the above equation gives us a change of basis relation.

Corollary 6.2. For �c(j) = �α(m − j),

Tk,m+1 =
k∑

p=1

αp(p − 1)Tk,m+1−p.

Moreover, if αk(j) �= 0 for j = 0, 1, . . . , k − 1, the set

{Tk,m−j; j = 0, 1, . . . , k − 1}
forms a basis for the solution space of Eq. (26).

Observe that if α1, α2, . . . , αk are constants then, using the fact that |Sn| = n! and collecting like

terms, we have

Tk,m+1 = ∑
(a1,a2,...,ak)∈Q(k,m+1)

⎛
⎜⎝ a1 + a2 + · · · + ak

a1, a2, . . . , ak

⎞
⎟⎠ α

a1
1 α

a2
2 · · · αak

k .

This is the solution �1 of Eq. (26) with constant coefficients and initial conditions X(0) = 0 = · · · =
X(k − 2) and X(k − 1) = 1. The same answer is obtained in [2] and is listed as Identity 5. In the same
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paper, Tk,m+1 is called the generalized kth order Fibonacci number and is obtained by counting the

number of ways to tile a board of length (m + 1) with colored tiles of length at most k.

7. Conclusions

We see in this paper that the entries in the product of companion matrices could be expressed in

terms of a single function Tk,m. In particular, it is interesting to note that the solution space of Eq. (26)

is spanned by the integer translates of the function Tk,m as noted in Corollary 6.2. As further work, we

could analyze Tk,m to understand qualitative properties of the solutions of linear difference equation. It

would also be interesting to explore applications of the product formula toMarkov chains and random

walks.

Another direction to explore is, perhaps, the further extension of the weight-free graph idea in

this paper to other combinatorial matrix analysis in [1] and non-homogeneous product of matrices

discussed in [8].
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