University of Notre Dame Department of Mathematics

PDE, COMPLEX ANALYSIS AND DIFFERENTIAL GEOMETRY SEMINAR

Adriano Tomassini

University of Parma

Will give a lecture entitled:

On cohomological decomposability of almost-complex structures

On

Tuesday, May 10, 2011

At

11:00 AM

ln

258 Hurley Hall

Abstract

Recently, some authors have studied cohomological properties of compact almost-complex manifolds (see e.g. [3], [4], [5] and the references therein). In this talk we will focus on \mathcal{C}^{∞} -pure-and-full almost-complex structures. More precisely, let J be an almost-complex structure on a 2n-dimensional manifold M. Then J acts in a natural way on the bundle of 2-forms $\Lambda^2(M)$, and

$$\Omega^2(M) = \Omega_J^{1,1}(M)_{\mathbb{R}} \oplus \left(\Omega_J^{2,0}(M) + \Omega_J^{0,2}(M)\right)_{\mathbb{R}},$$

where $\Omega^2(M)$ denotes the space of sections of $\Lambda^2(M)$ and $\Omega_J^{1,1}(M)_{\mathbb{R}}$, $\left(\Omega_J^{2,0}(M) + \Omega_J^{0,2}(M)\right)_{\mathbb{R}}$ are the *J*-invariant and *J*-anti-invariant 2-forms respectively.

Therefore, it is natural to consider the subgroups $H_J^{1,1}(M)_{\mathbb{R}}$, $H_J^{(2,0),(0,2)}(M)_{\mathbb{R}}$ of $H_{dR}^2(M;\mathbb{R})$ whose elements are cohomological classes which admit a representative of pure type (1,1), (2,0)+(0,2) respectively.

In the terminology of T.-J.- Li and W. Zhang (see [3]), an almost-complex structure J on M is said to be C^{∞} -pure-and-full if

$$H^2_{dR}(M;R) = H^{1,1}_J(M)_{\mathbb{R}} \oplus H^{(2,0),(0,2)}_J(M)_{\mathbb{R}}$$
.

In [4], T. Draghici, T.-J. Li and W. Zhang have proved that

every almost-complex strutcure on a 4-dimensional compact manifold is \mathcal{C}^{∞} -pure-and-full.

This result can be viewed as a Hodge decomposition for compact 4-dimensional almost-complex manifolds.