High-rate, short length, (3,3s)-regular LDPC of girth 6 and 8

Michael E. O'Sullivan
Dept. of Mathematics and Statistics
San Diego State University
San Diego, CA 92182-7720
email: mosulliv@math.sdsu.edu

Abstract - This paper presents a simple construction of a class of LDPC codes generalizing [BHSO1] and gives necessary and sufficient, easy to implement, conditions for avoiding $2 m$ cycles, $m \geq 2$. The parity check matrix is formed by square blocks, with each block a sum of three permutation matrices, chosen such that the block is $(3,3)$ regular. The resulting codes have rate $(s-1) / s$.

I. Construction of the check matrix

Let $n>0$ be an integer. Let $F: r \mapsto a_{F} r+b_{F} \bmod n$ be an affine map on \mathbb{Z}_{n}, with a_{F} coprime to n so that F is a permutation. We define the affine permutation matrix, $P^{(F)}$,

$$
\left(P^{(F)}\right)_{r, c}= \begin{cases}1 & \text { if } a_{F} r+b_{F} \equiv c \quad(\bmod n) \\ 0 & \text { else }\end{cases}
$$

Let $s \geq 2$ be an integer and for $1 \leq i \leq s$ let F_{i}, G_{i}, H_{i} be affine permutations of \mathbb{Z}_{n} such that $F_{i}(r), G_{i}(r)$ and $H_{i}(r)$ are distinct for all $r \in \mathbb{Z}_{n}$. Let $X_{i}=P^{\left(F_{i}\right)}+P^{\left(G_{i}\right)}+P^{\left(H_{i}\right)}$. Then each X_{i} is $(3,3)$ regular. Let $Z=\left[\begin{array}{llll}X_{1} & X_{2} & \ldots & X_{s}\end{array}\right]^{T}$, and let C be the code with parity-check matrix $Z . C$ is a regular $(3,3 s)$ low-density parity-check code. When n is prime it may be assumed that $a_{F_{i}}, a_{G_{i}}, a_{H_{i}}$, are all 1 and that all F_{i} are the identity functions.
II. Conditions for cycles in an $n \times n$ matrix

A finite sequence f_{0}, \ldots, f_{n-1} of elements of a set S is called a swapping sequence from S if $f_{i} \neq f_{i+1}$ for $i=0, \ldots, n-1$. The sequence is balanced if for each $s \in S$ the sets $\{i$ odd: $\left.f_{i}=s\right\}$ and $\left\{i\right.$ even : $\left.f_{i}=s\right\}$ have the same number of elements.

Proposition II. 1 ([OS02]). Let F, G, H and X be as above. Let R and C be copies of \mathbb{Z}_{n} representing the set of rows and columns, respectively, of X. Then the sequence $r_{0} c_{0} r_{1} c_{1} r_{2} \ldots r_{m-1} c_{m-1}$, with $r_{i} \in R$ and $c_{i} \in C$, is a $2 m$ cycle of the graph associated to X iff there exists a swapping sequence $f_{0}, f_{1}, f_{2}, \ldots, f_{2 m-2}, f_{2 m-1}$, from $\{F, G, H\}$, s.t. $f_{2 k}\left(r_{k}\right) \equiv c_{k} \equiv f_{2 k+1}\left(r_{k+1}\right)(\bmod n)$. If this is the case then $\sum_{k=0}^{m-1}\left(b_{2 k+1}-b_{2 k}\right) \prod_{i=0}^{k-1} a_{2 i+1} \prod_{i=k+1}^{m-1} a_{2 i} \equiv 0(\bmod n)$.

These congruences can be analyzed modulo each prime power dividing n. In particular, when n is prime, we get a simple condition ensuring no small cycles from unbalanced sequences.

Proposition II.2. Let p be prime, F, G, H and X as above, and M a positive integer. Suppose that for all integers m, $1<m \leq M$ and for all $0<k<m$ with k coprime to m, $m x-k y-(m-k) z \not \equiv 0(\bmod p)$, for x, y, z any permutation of b_{F}, b_{G}, b_{H}. Then the only cycles of length less than or equal to $2 M$ in the graph of X are those arising from balanced sequences.

Roxana Smarandache
Dept. of Mathematics and Statistics
San Diego State University
San Diego, CA 92182-7720
email: rsmarand@math.sdsu.edu

The shortest balanced sequences are of the form $F G H F G H$, so for girth 6 the condition of the proposition is sufficient. For girth 8 we take $n=p q$ for p prime and $q=3$. We choose $a_{F} \equiv a_{G} \equiv a_{H} \equiv 1 \bmod p$ and enforce the conditions of the proposition. We take $a_{F} \equiv a_{G} \equiv 1 \bmod 3$ and $a_{H} \equiv 2 \bmod 3$. Then the girth of X is 8.
III. Construction of parity check matrices

For girth 6 we take $n=p$ a prime, F_{i} the identity function, $a_{G_{i}}=a_{H_{i}}=1$, and we choose inductively $b_{G_{j}}$ and $b_{H_{j}}$ as follows (all computations in \mathbb{Z}_{p}):
$b_{G_{j}} \notin D_{j}=\bigcup_{i<j}\left\{ \pm\left(b_{F_{i}}-b_{G_{i}}\right), \pm\left(b_{G_{i}}-b_{H_{i}}\right), \pm\left(b_{H_{i}}-b_{F_{i}}\right)\right\}$,
$b_{H_{j}} \notin\left\{0, b_{G_{j}}, 2 b_{G_{j}},-b_{G_{j}}, b_{G_{j}} / 2\right\}, b_{H_{j}} \notin D_{j}, b_{H_{j}}-b_{G_{j}} \notin D_{j}$.

s	rate	p	$[$ [length, dimension $]$
2	$1 / 2$	17	$[34,17]$
3	$2 / 3$	23	$[69,46]$
4	$3 / 4$	29	$[116,87]$
5	$4 / 5$	37	$[185,148]$
6	$5 / 6$	47	$[282,235]$
7	$6 / 7$	53	$[371,318]$
8	$7 / 8$	61	$[488,427]$

Table 1: Examples of $s p \times p,(3,3 s)$ - regular graphs with girth 6.

The procedure for girth 8 is a bit more complicated. Some results are tabulated below.

s	rate	p	$n=3 p$	$[$ length, dimension $]$
2	$1 / 2$	47	141	$[282,141]$
3	$2 / 3$	89	267	$[801,534]$
4	$3 / 4$	149	447	$[1788,1341]$

Table 2: Examples of $s p \times p,(3,3 s)$ - regular graphs with girth 8.

References

[BHS01] J. Bond, S. Hui, and H. Schmidt. Linear-congruence construction of low-density check codes. In B. Marcus and J. Rosenthal, editors, Codes, Systems and Graphical Models, IMA Vol. 123, pages $83-100$. Springer-Verlag, 2001.
[OS02] M. E. O'Sullivan, M. Greferath, R. Smarandache, Construction of LDPC codes from affine permutation matrices. In Proceedings of the 40 th Allerton Conference on Communication, Control and Computing, 2002.

