Title: Taxi walks and the hard-core distribution on \mathbb{Z}^2

Abstract:
The hard-core distribution on a graph G is the probability distribution on the independent sets of G (sets of mutually non-adjacent vertices) in which each such set I has probability proportional to $\lambda^{|I|}$, for some $\lambda > 0$. The hard-core distribution arose as a simple model of the occupation of space by a gas with massive particles, and is mainly of interest because it has the potential to exhibit a liquid-solid phase transition: for small λ a typical configuration should be a mostly uncorrelated sparse set of vertices, while for larger λ it should be a highly correlated dense subset of a maximum independent set.

I’ll focus on the integer lattice \mathbb{Z}^2, where we strongly expect a liquid-solid transition point to exist. I’ll discuss recent work with Blanca, Randall and Tetali, where we show that the solid phase can be better understood by introducing a new class of self-avoiding walks on \mathbb{Z}^2 that mimics the movement of taxi cabs around Manhattan.