Darlayne Addabbo - University of Illinois at Urbana-Champaign

Department of Mathematics University of Notre Dame

ALGEBRA SEMINAR

Speaker: Darlayne Addabbo

University of Illinois at Urbana-Champaign

Date: Tuesday, May 9, 2017

Time: 1:00 PM

Location: 127 Hayes-Healy Hall

Lecture Title:

Q-systems and Generalizations in Representation Theory

Abstract

In this talk, we will define tau-functions given as matrix elements for the action of loop groups, \widehat{GL}_n on n-component fermionic Fock space. In the simplest case, n=2, the tau-functions are equal to Hankel determinants and applying the famous Desnanot-Jacobi identity, one can see that they satisfy a Q-system. Since Q-systems are of interest in many areas of mathematics, it is interesting to study tau-functions and the discrete equations they satisfy for the n>2 cases. In this talk, we will primarily focus on the n=3 case. We have generalized this work by studying tau-functions equal to matrix elements for the action of infinite matrix groups on n-component fermionic Fock space. The n=2 case, similarly to the \widehat{GL}_2 case, gives tau-functions which have a simple determinantal formula and the relations they satisfy are again obtained by applying the Desnanot-Jacobi identity. In this case, the tau-functions satisfy a T-system, which is a generalization of the Q-system obtained in the \widehat{GL}_2 case. The method of ultra-discretization provides a way to obtain from discrete integrable equations, combinatorial models that maintain the essential properties of the original equations. With some extra conditions, it is known that the Q-system can be ultra-discretized to obtain the famous Box and Ball system. In the second half of this talk, we present a new generalization of the Box and Ball system obtained by ultra-discretizing the T-system.