Title: Computability strength of \mathbb{R} compared to 2^ω

Abstract:
In recent work, Noah Schweber defines a reducibility notion for structures A and B, potentially uncountable. The idea of the reducibility is that $A \leq^*_\omega B$ if, after a forcing collapse that causes A and B to become countable, every copy of B computes a copy of A. This notion turns out to be independent of the specific forcing that is used.

From this point of view, we wish to consider two structures: the field $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$, and the two-sorted power set of ω, $\mathcal{W} = (\mathcal{P}(\omega) \cup \omega, \in, S)$. After forcing collapse, \mathcal{R} continues to be an Archimedean real closed field, and ω continues to be ω, so \mathcal{W} continues to be a Scott set.

Schweber proved that $\mathcal{W} \leq^*_\omega \mathcal{R}$. (The binary expansions of the elements of \mathcal{R} are precisely the subsets of ω that can be found in \mathcal{W}, before and after forcing collapse.) We prove that the converse does not hold: in any forcing extension of V that collapses 2^ω, there is a copy of \mathcal{W} that cannot compute a copy of \mathcal{R}.

This proves that the computability theorist’s \mathbb{R} is different from the analyst’s \mathbb{R} in a fairly intrinsic manner: the various problems that arise with diadic rationals, or with equality of Cauchy sequences are unavoidable when translating between 2^ω and \mathbb{R}.